
1

UNIT – I

Evolution and Architecture of Microprocessors 8085 and 8086

1-1.Evolution of Microprocessor 8085

 (i) 4-bit Microprocessors: The first microprocessor was introduced in 1971 by Intel Corp.

It was named Intel 4004 as it was a 4 bit processor. It was a processor on a single chip. It could

perform simple arithmetic and logic operations such as addition, subtraction, boolean AND and

boolean OR. It had a control unit capable of performing control functions like fetching an

instruction from memory, decoding it, and generating control pulses to execute it. It was able to

operate on 4 bits of data at a time.This first microprocessor was quite a success in industry. Soon

other microprocessors were also introduced. Intel introduced the enhanced version of 4004, the

4040. Some other 4 bit processors are International‟s PPS4 and Thoshiba‟s T3472.

 (ii) 8-bit Microprocessors: The first 8 bit microprocessor which could perform arithmetic and

logic operations on 8 bit words was introduced in 1973 again by Intel. This was Intel 8008 and

was later followed by an improved version, Intel 8088. Some other 8 bit processors are Zilog-80

and Motorola M6800.

 (iii) 16-bit Microprocessors: The 8-bit processors were followed by 16 bit processors. They

are Intel 8086 and 80286.

(iv) 32-bit Microprocessors: The 32 bit microprocessors were introduced by several companies

but the most popular one is Intel 80386.

 (v) Pentium Series: Instead of 80586, Intel came out with a new processor namely Pentium

processor. Its performance is closer to RISC performance. Pentium was followed by Pentium Pro

CPU. Pentium Pro allows allow multiple CPUs in a single system in order to achive

multiprocessing. The MMX extension was added to Pentium Pro and the result was Pentiuum II.

The low cost version of Pentium II is Celeron. The Pentium III provided high performance

floating point operations for certain types of computations by using the SIMD extensions to the

instruction set. These new instructions makes the Pentium III faster than high-end RISC CPUs.

Interestingly Pentium IV could not execute code faster than the Pentium III when running at the

same clock frequency. So Pentium IV had to speed up by executing at a much higher clock

frequency.

1.2. Computer & Classification of Computers:

 Computer is an electronic device which has many units like Input unit, Control unit and

Output unit. Input unit consists of input devices like keyboard, mouse, scanner, light pen, etc.,

Output unit consists of output devices like printer, monitor, etc., Control unit controls all the

actions of computer which consists of memory unit, Arithmetic and logic unit. A computer is

one of the most brilliant inventions of mankind. Depending on the processing power and size of

computers, they have been classified under various types.

2

(a) Classification of Computers on the basis of operational principle

Based on the operational principle of computers, they are categorized as analog, digital and

hybrid computers.

(i). Analog Computers: These are almost extinct today. These are different from a digital

computer because an analog computer can perform several mathematical operations

simultaneously. It uses continuous variables for mathematical operations and utilizes mechanical

or electrical energy.

(ii). Digital Computers: They use digital circuits and are designed to operate on two states,

namely bits 0 and 1. They are analogous to states ON and OFF. Data on these computers is

represented as a series of 0s and 1s. Digital computers are suitable for complex computation

and have higher processing speeds. They are programmable. Digital computers are either general

purpose computers or special purpose ones. General purpose computers, as their name suggests,

are designed for specific types of data processing while general purpose computers are meant for

general use.

(iii). Hybrid Computers: These computers are a combination of both digital and analog

computers. In this type of computers, the digital segments perform process control by conversion

of analog signals to digital ones.

(b) Classification on the basis of types:

(i). Mainframe Computers: Large organizations use mainframes for highly critical applications

such as bulk data processing and ERP. Most of the mainframe computers have capacities to

host multiple operating systems and operate as a number of virtual machines. They can

substitute for several small servers.

(ii). Microcomputers: A computer with a microprocessor and its central processing unit is

known as a microcomputer. They do not occupy space as much as mainframes do. When

supplemented with a keyboard and a mouse, microcomputers can be called personal

computers. A monitor, a keyboard and other similar input-output devices, computer memory

in the form of RAM and a power supply unit come packaged in a microcomputer. These

computers can fit on desks or tables and prove to be the best choice for single-user tasks.

(iii). Personal Computers: Personal computers come in different forms such as desktops,

laptops and personal digital assistants. Let us look at each of these types of computers.

(iv) Desktops: A desktop is intended to be used on a single location. The spare parts of a desktop

computer are readily available at relatively lower costs. Power consumption is not as critical as

that in laptops. Desktops are widely popular for daily use in the workplace and households.

3

(v)Laptops: Similar in operation to desktops, laptop computers are miniaturized and optimized

for mobile use. Laptops run on a single battery or an external adapter that charges the computer

batteries. They are enabled with an inbuilt keyboard, touch pad acting as a mouse and a liquid

crystal display. Their portability and capacity to operate on battery power have proven to be of

great help to mobile users.

(vi) Notebooks: They fall in the category of laptops, but are inexpensive and relatively smaller

in size. They had a smaller feature set and lesser capacities in comparison to regular laptops,

(v) Personal Digital Assistants (PDAs): It is a handheld computer and popularly known as a

palmtop. It has a touch screen and a memory card for storage of data. PDAs can also be used as

portable audio players, web browsers and smart phones. Most of them can access the Internet by

means of Bluetooth or Wi-Fi communication.

(vi) Minicomputers: In terms of size and processing capacity, minicomputers lie in between

mainframes and microcomputers. Minicomputers are also called mid-range systems or

workstations. The term began to be popularly used in the 1960s to refer to relatively smaller third

generation computers. They took up the space that would be needed for a refrigerator or two and

used transistor and core memory technologies. The 12-bit PDP-8 minicomputer of the Digital

Equipment Corporation was the first successful minicomputer.

(vii) Servers: They are computers designed to provide services to client machines in a computer

network. They have larger storage capacities and powerful processors. Running on them are

programs that serve client requests and allocate resources like memory and time to client

machines. Usually they are very large in size, as they have large processors and many hard

drives. They are designed to be fail-safe and resistant to crash.

(viii) Supercomputers: The highly calculation-intensive tasks can be effectively performed by

means of supercomputers. Quantum physics, mechanics, weather forecasting, molecular theory

are best studied by means of supercomputers. Their ability of parallel processing and their well-

designed memory hierarchy give the supercomputers, large transaction processing powers.

(ix) Wearable Computers: A record-setting step in the evolution of computers was the creation

of wearable computers. These computers can be worn on the body and are often used in the study

of behavior modeling and human health. Military and health professionals have incorporated

wearable computers into their daily routine, as a part of such studies. When the users' hands and

sensory organs are engaged in other activities, wearable computers are of great help in tracking

human actions. Wearable computers do not have to be turned on and off and remain in operation

without user intervention.

(x) Tablet Computers: Tablets are mobile computers that are very handy to use. They use the

4

touch screen technology. Tablets come with an onscreen keyboard or use a stylus or a digital

pen. Apple's iPad redefined the class of tablet computers.

1.3. Pin diagram and Pin description of 8085

 8085 is a 40 pin IC, DIP package. The signals from the pins can be grouped as follows

(i) Power supply and clock signals

(ii) Address bus

(iii)Data bus

(iv) Control and status signals

(v) Interrupts and externally initiated signals

(vi) Serial I/O ports

(i) Power supply and Clock frequency signals:

 Vcc + 5 volt power supply

 Vss Ground

 X1, X2 : Crystal or R/C network or LC network connections to set the frequency of

internal clock generator.

 The frequency is internally divided by two. Since the basic operating timing frequency is

3 MHz, a 6 MHz crystal is connected externally.

 CLK (output)-Clock Output is used as the system clock for peripheral and devices

interfaced with the microprocessor.

 (ii) Address Bus:

 A8 - A15 (output; 3-state). It carries the most significant 8 bits of the memory address

or the 8 bits of the I/O address;

(iii). Multiplexed Address / Data Bus:

 AD0 - AD7 (input/output; 3-state). These multiplexed set of lines used to carry the lower

order 8 bit address as well as data bus. During the opcode fetch operation, in the first

clock cycle, the lines deliver the lower order address A0 - A7.

 In the subsequent IO / memory, read / write clock cycle the lines are used as data bus.

 The CPU may read or write out data through these lines.

(iv). Control and Status signals:

 ALE (output) - Address Latch Enable. This signal helps to capture the lower order

address presented on the multiplexed address / data bus.

 RD (output 3-state, active low) - Read memory or IO device. This indicates that the

selected memory location or I/O device is to be read and that the data bus is ready for

accepting data from the memory or I/O device.

5

 WR (output 3-state, active low) - Write memory or IO device. This indicates that the data

on the data bus is to be written into the selected memory location or I/O device.

 IO/M (output) - Select memory or an IO device. This status signal indicates that the read /

write operation relates to whether the memory or I/O device. It goes high to indicate an

I/O operation.It goes low for memory operations.

(v). Status Signals:

 It is used to know the type of current operation of the microprocessor.

 Fig 1.1(a) - Pin Diagram of 8085 & Fig.1.1(b) - logical schematic of Pin diagram.

6

(vi). Interrupts and Externally initiated operations:

 They are the signals initiated by an external device to request the microprocessor to do a

particular task or work.

 There are five hardware interrupts called,

 Fig. 1,2

On receipt of an interrupt, the microprocessor acknowledges the interrupt by the active low

INTA (Interrupt Acknowledge) signal.

READY (input)

 Memory and I/O devices will have slower response compared to microprocessors.

 Before completing the present job such a slow peripheral may not be able to handle

further data or control signal from CPU.

 The processor sets the READY signal after completing the present job to access the data.

 The microprocessor enters into WAIT state while the READY pin is disabled.

 Direct Memory Access (DMA):

7

Tri state devices:

Fig. 1.3

 3 output states are high & low states and additionally a high impedance state. When

enable E is high the gate is enabled and the output Q can be 1 or 0 (ifA is 0, Q is 1,

otherwise Q is 0). However, when E is low the gate is disabled and the output Q

entersinto a high impedance state

.

Fig. 1.4

 For both high and low states, the output Q draws a current from the input of the OR gate.

 When E is low, Q enters a high impedance state; high impedance means it is electrically

isolated from the OR gate's input, though it is physically connected. Therefore, it does not

draw any current from the OR gate's input.

 When 2 or more devices are connected to a common bus, to prevent the devices from

interfering with each other, the tristate gates are used to disconnect all devices except the

one that is communicating at a given instant.

 The CPU controls the data transfer operation between memory and I/O device. Direct

Memory Access operation is used for large volume data transfer between memory and an

I/O device directly.

 The CPU is disabled by tri-stating its buses and the transfer is effected directly by

external control circuits.

 HOLD signal is generated by the DMA controller circuit. On receipt of this signal, the

microprocessor acknowledges the request by sending out HLDA signal and leaves out the

control of the buses. After the HLDA signal the DMA controller starts the direct transfer

of data.

8

(vi). Single Bit Serial I/O ports:

 SID (input) - Serial input data line

 SOD (output) - Serial output data line

 These signals are used for serial communication.

1.4. Bus Structure of 8085 Microprocessor : There are three buses in Microprocessor:

 1. Address Bus 2. Data Bus . 3. Control Bus

Fig. 1.5: Bus Structure

1.Address Bus:- Genearlly, Microprocessor has 16 bit address bus. The bus over which the

CPU sends out the address of the memory location is known as Address bus. The address bus

carries the address of memory location to be written or to be read from. The address bus is

unidirectional. It means bits flowing occurs only in one direction, only from microprocessor to

peripheral devices.

2. Data Bus:- 8085 Microprocessor has 8 bit data bus. So it can be used to carry the 8 bit data

starting from 00000000H(00H) to 11111111H(FFH). Here 'H' tells the Hexadecimal Number. It

is bidirectional. These lines are used for data flowing in both direction means data can be

transferred or can be received through these lines. The data bus also connects the I/O ports and

CPU. The largest number that can appear on the data bus is 11111111.

9

3.Control Bus:-The control bus is used for sending control signals to the memory and I/O

devices. The CPU sends control signal on the control bus to enable the outputs of addressed

memory devices or I/O port devices. Some of the control bus signals are as follows:

 (i).Memory read (ii) . Memory write (iii). I/O read (iv). I/O write.

1.5. Architecture of 8085 Microprocessor :

The Functional Block Diagram of 8085 Microprocessor is given below:

Fig. 1.6 Architecture of 8085

10

Fig.1.7

Acumulator:- It is a 8-bit register which is used to perform airthmetical and logical operation. It

stores the output of any operation. It also works as registers for i/o accesses.

Temporary Register:- It is a 8-bit register which is used to hold the data on which the

acumulator is computing operation. It is also called as operand register because it provides

operands to ALU.

Registers:- These are general purposes registers. Microprocessor consists 6 general purpose

registers of 8-bit each named as B, C, D, E,H and L. Generally theses registers are not used for

storing the data permanently. It carries the 8-bits data. These are used only during the execution

of the instructions. These registers can also be used to carry the 16 bits data by making the pair

of 2 registers. The valid register pairs available are BC, DE HL. We can not use the pairs except

BC, DE and HL. These registers are programmed by user.

ALU:-ALU performs the airthmetic operations and logical operation.

Flag Registers:-It consists of 5 flip flop which changes its status according to the result stored in

an accumulator. It is also known as status registers. It is connected to the ALU. There are five

flip-flops in the flag register are as follows:

 1.Sign(S) 2.Zero (Z) 3.Auxiliary carry (AC) 4.Parity (P) 5.Carry (C)

The bit position of the flip flop in flag register is:

11

All of the three flip flop set and reset according to the stored result in the accumulator.

1. Sign- If D7 of the result is 1 then sign flag is set otherwise reset. As we know that a number

on the D7 always desides the sign of the number.

 if D7 is 1: the number is negative.

 if D7 is 0: the number is positive.

2. Zeros (Z)-If the result stored in an accumulator is zero then this flip flop is set otherwise it is

reset.

 3.Auxiliary carry(AC)-If any carry goes from D3 to D4 in the output then it is set otherwise it is

reset.

 4.Parity(P)-If the no of 1's is even in the output stored in the accumulator then it is set otherwise

it is reset for the odd.

 5.Carry(C)-If the result stored in an accumulator generates a carry in its final output then it is set

otherwise it is reset.

Instruction registers(IR):-It is a 8-bit register. When an instruction is fetched from memory

then it is stored in this register.

Instruction Decoder:- Instruction decoder identifies the instructions. It takes the informations

from instruction register and decodes the instruction to be performed.

Program Counter:-It is a 16 bit register used as memory pointer. It stores the memory address

of the next instruction to be executed. So we can say that this register is used to sequencing the

program. Generally the memory have 16 bit addresses so that it has 16 bit memory.

The program counter is set to 0000H.

Stack Pointer:-It is also a 16 bit register used as memory pointer. It points to the memory

location called stack. Generally stack is a reserved portion of memory where information can be

stores or taken back together.

Timing and Control Unit:-It provides timing and control signal to the microprocessor to

perform the various operation.It has three control signal. It controls all external and internal

circuits. It operates with reference to clock signal.It synchronizes all the data transfers.

12

There are three control signal:

 1.ALE-Airthmetic Latch Enable, It provides control signal to synchronize the components of

microprocessor.

 2.RD- This is active low used for reading operation.

 3.WR-This is active low used for writing operation. There are three status signal used in

microprocessor S0, S1 and IO/M. It changes its status according the provided input to these pins.

Serial Input Output Control-There are two pins in this unit. This unit is used for serial data

communication.

Interrupt Unit-There are 6 interrupt pins in this unit. Generally an external hardware is

connected to these pins. These pins provide interrupt signal sent by external hardware to

microprocessor and microprocessor sends acknowledgement for receiving the interrupt signal.

Generally INTA is used for acknowledgement.

8085- Registers

 The 8085 has six general purpose registers to store 8 bit data. These are identified as B, C, D, E,

H, L. they can be combined as register pairs BC, DE, and HL, to perform 16 bit operations.

Accumulator

The acc is an 8 bit register that is part of the arithmetic logic unit [ALU]. This register is used to

store 8 bit data and to perform arithmetic and logical operations. The result of the operation is

stored in the accumulator and identified as A.

13

Flags

The arithmetic logic unit [ALU] includes 5 flip flops which are set or reset after an operation

according to data conditions of the result in the accumulator and other registers. They are called

zero (Z), carry (CY), sign(S), parity (P), and auxiliary carry (AC). The microprocessor used

these flags to test data conditions.

Program counter

The microprocessor uses the PC register to sequence the execution of the instructions. The

function of the PC is to point to the memory address from which the next byte is to be fetched.

When a byte is being fetched, the pc is increased by one to point to the next memory location.

Stack pointer

The SP is also a 16 bit register used as a memory pointer. It points to a memory location in R/W

memory, called the stack

Interrupts In 8085

What is Interrupt?

Interrupt is a mechanism by which an I/O or an instruction can suspend the normal execution of

processor and get itself serviced. Generally, a particular task is assigned to that interrupt signal.

In the microprocessor based system the interrupts are used for data transfer between the

peripheral devices and the microprocessor.

Interrupt Service Routine(ISR)

Interrupt means to break the sequence of operation. While the CPU is executing a program an

interrupt breaks the normal sequence of execution of instructions & diverts its execution to some

other program. This program to which the control is transferred is called the interrupt service

routine. A small program or a routine that when executed services the corresponding interrupting

source is called as an ISR.

Execution of Interrupts

When there is an interrupt requests to the Microprocessor then after accepting the interrupts

Microprocessor send the INTA (active low) signal to the peripheral. The vectored address of

particular interrupt is stored in program counter. The processor executes an interrupt service

routine (ISR) addressed in program counter.

There are two types of interrupts used in 8085 Microprocessor:

Hardware Interrupts and Software Interrupts

14

Software Interrupts

A software interrupts is a particular instructions that can be inserted into the desired location in

the rpogram. There are eight Software interrupts in 8085 Microprocessor. From RST0 to RST7.

 RST0, RST1, RST2, RST3, RST4, RST5, RST6, RST7

They allow the microprocessor to transfer program control from the main program to the

subroutine program. After completing the subroutine program, the program control returns back

to the main program.

Hardware Interrupts

 There are 6 interrupt pins in the microprocessor used as Hardware Interrrupts given below:

 TRAP, RST7.5, RST6.5, RST5.5, INTR

Note:

INTA is not an interrupt. INTA is used by the Microprocessor for sending the acknowledgement.

TRAP has highest priority and RST7.5 has second highest priority and so on.

TRAP

It is non maskable edge and level triggered interrupt. TRAP has the highest priority and vectored

interrupt. Edge and level triggered means that the TRAP must go high and remain high until it is

acknowledged. In case of sudden power failure, it executes a ISR and send the data from main

memory to backup memory.

As we know that TRAP can not be masked but it can be delayed using HOLD signal. This

interrupt transfers the microprocessor's control to location 0024H.

TRAP interrupts can only be masked by reseting the microprocessor. There is no other way to

mask it.

RST7.5

It has the second highest priority. It is maskable and edge level triggered interrupt. The vector

address of this interrupt is 003CH. Edge sensitive means input goes high and no need to maintain

high state until it is recognized. It can also be reset or masked by reseting microprocessor. It can

also be resetted by DI instruction.

RST6.5 and RST5.5

These are level triggered and maskable interrupts. When RST6.5 pin is at logic 1, INTE flip-flop

is set. RST 6.5 has third highest priority and RST 5.5 has fourth highest priority.

15

It can be masked by giving DI and SIM instructions or by reseting microprocessor.

INTR

It is level triggered and maskable interrupt. The following sequence of events occurs when INTR

signal goes high. The 8085 checks the status of INTR signal during execution of each

instruction. If INTR signal is high, then 8085 complete its current instruction and sends active

low interrupt acknowledge signal, if the interrupt is enabled. On receiving the instruction, the

8085 save the address of next instruction on stack and execute received instruction. It has the

lowest priority. It can be disabled by reseting the microprocessor or by DI and SIM instruction.

1.6. Intel 8086 Microprocessor:

 Pin Diagram:

 Fig. 1.8 Pin diagram of 8086 micprocessor

16

The 8086 can operate in two modes these are the minimum mode and maximum mode . For

minimum mode, a unique processor system with a single 8086 and for Maximum mode a multi

processor system with more than one 8086. The following pin function descriptions are for the

microprocessor 8086 in either minimum or maximum mode.

AD0 - AD15 (I/O): Address Data Bus

 These lines constitute the time multiplexed memory/IO address during the first clock cycle

(T1) and data during T2, T3 and T4 clock cycles. A0 is analogous to BHE for the lower byte of

the data bus, pins D0-D7. A0 bit is Low during T1 state when a byte is to be transferred on the

lower portion of the bus in memory or I/O operations. 8-bit oriented devices tied to the lower

half would normally use A0 to condition chip select functions. These lines are active high and

float to tri-state during interrupt acknowledge and local bus "Hold acknowledge".

A19/S6, A18/S5, A17/S4, A16/S3 (0): Address/Status

 During T1 state these lines are the four most significant address lines for memory

operations. During I/O operations these lines are low. During memory and I/O operations, status

information is available on these lines during T2, T3, and T4 states.S5: The status of the interrupt

enable flag bit is updated at the beginning of each cycle. The status of the flag is indicated

through this bus.

S6: When Low, it indicates that 8086 is in control of the bus. During a "Hold acknowledge"

clock period, the 8086 tri-states the S6 pin and thus allows another bus master to take control of

the status bus.

S3 & S4:

 Lines are decoded as follows:

 A17/S4 A16/S3 Function

 0 0 Extra segment access

 0 1 Stack segment access

 1 0 Code segment access

 1 1 Data segment access

After the first clock cycle of an instruction execution, the A17/S4 and A16/S3 pins specify which

segment register generates the segment portion of the 8086 address. Thus by decoding these lines

and using the decoder outputs as chip selects for memory chips, up to 4 Megabytes (one Mega

per segment) of memory can be accesses. This feature also provides a degree of protection by

17

preventing write operations to one segment from erroneously overlapping into another segment

and destroying information in that segment.

BHE /S7 (O): Bus High Enable/Status: During T1 state the BHE should be used to enable

data onto the most significant half of the data bus, pins D15 - D8. Eight-bit oriented devices tied

to the upper half of the bus would normally use BHE to control chip select functions. BHE is

Low during T1 state of read, write and interrupt acknowledge cycles when a byte is to be

transferred on the high portion of the bus.

 The S7 status information is available during T2, T3 and T4 states. The signal is active Low

and floats to 3-state during "hold" state. This pin is Low during T1 state for the first interrupt

acknowledge cycle.

RD (O): READ: The Read strobe indicates that the processor is performing a memory or I/O

read cycle. This signal is active low during T2 and T3 states and the Tw states of any read cycle.

This signal floats to tri-state in "hold acknowledge cycle".

TEST (I): TEST pin is examined by the "WAIT" instruction. If the TEST pin is Low, execution

continues. Otherwise the processor waits in an "idle" state. This input is synchronized internally

during each clock cycle on the leading edge of CLK.

INTR (I): Interrupt Request: It is a level triggered input which is sampled during the last clock

cycle of each instruction to determine if the processor should enter into an interrupt acknowledge

operation. A subroutine is vectored to via an interrupt vector look up table located in system

memory. It can be internally masked by software resetting the interrupt enable bit INTR is

internally synchronized. This signal is active HIGH.

NMI (I): Non-Maskable Interrupt: An edge triggered input, causes a type-2 interrupt. A

subroutine is vectored to via the interrupt vector look up table located in system memory. NMI is

not maskable internally by software. A transition from a LOW to HIGH on this pin initiates the

interrupt at the end of the current instruction. This input is internally synchronized.

Reset (I): Reset causes the processor to immediately terminate its present activity. To be

recognised, the signal must be active high for at least four clock cycles, except after power-on

which requires a 50 Micro Sec. pulse. It causes the 8086 to initialize registers DS, SS, ES, IP and

flags to all zeros. It also initializes CS to FFFF H. Upon removal of the RESET signal from the

RESET pin, the 8086 will fetch its next instruction from the 20 bit physical address FFFF0H.

The reset signal to 8086 can be generated by the 8284. (Clock generation chip). To guarantee

reset from power-up, the reset input must remain below 1.5 volts for 50 Micro sec. after Vcc has

reached the minimum supply voltage of 4.5V.

18

Ready (I): Ready is the acknowledgement from the addressed memory or I/O device that it will

complete the data transfer. The READY signal from memory or I/O is synchronized by the 8284

clock generator to form READY. This signal is active HIGH. The 8086 READY input is not

synchronized. Correct operation is not guaranteed if the setup and hold times are not met.

CLK (I): Clock: Clock provides the basic timing for the processor and bus controller. It is

asymmetric with 33% duty cycle to provide optimized internal timing. Minimum frequency of 2

MHz is required, since the design of 8086 processors incorporates dynamic cells. The maximum

clock frequencies of the 8086-4, 8086 and 8086-2 are4MHz, 5MHz and 8MHz respectively.

Since the 8086 does not have on-chip clock generation circuitry, and 8284 clock generator chip

must be connected to the 8086 clock pin. The crystal connected to 8284 must have a frequency 3

times the 8086 internal frequency. The 8284 clock generation chip is used to generate READY,

RESET and CLK.

MN/MX (I): Maximum / Minimum:

 This pin indicates what mode the processor is to operate in. In minimum mode, the 8086

itself generates all bus control signals. In maximum mode the three status signals are to be

decoded to generate all the bus control signals.

Minimum Mode Pins : The following 8 pins function descriptions are for the 8086 in minimum

mode; MN/ MX = 1. The corresponding 8 pins function descriptions for maximum mode is

explained later.

(i) M/IO (O): Status line: This pin is used to distinguish a memory access or an I/O accesses.

When this pin is Low, it accesses I/O and when high it access memory. M / IO becomes valid in

the T4 state preceding a bus cycle and remains valid until the final T4 of the cycle. M/IO floats

to 3 - state OFF during local bus "hold acknowledge".

(ii) WR (O): Write: Indicates that the processor is performing a write memory or write IO

cycle, depending on the state of the M /IOsignal. WR is active for T2, T3 and Tw of any write

cycle. It is active LOW, and floats to 3-state OFF during local bus "hold acknowledge ".

(iii) INTA (O): Interrupt Acknowledge: It is used as a read strobe for interrupt acknowledge

cycles. It is active LOW during T2, T3, and T4 of each interrupt acknowledge cycle.

(iv) ALE (O): Address Latch Enable: ALE is provided by the processor to latch the address

into the 8282/8283 address latch. It is an active high pulse during T1 of any bus cycle. ALE

signal is never floated.

(v) DT/ R (O): DATA Transmit/Receive: In minimum mode, 8286/8287 transceiver is used for

the data bus. DT/ R is used to control the direction of data flow through the transceiver. This

signal floats to tri-state off during local bus "hold acknowledge".

19

(vi) DEN (O): Data Enable: It is provided as an output enable for the 8286/8287 in a minimum

system which uses the transceiver. DEN is active LOW during each memory and IO access. It

will be low beginning with T2 until the middle of T4, while for a write cycle, it is active from the

beginning of T2 until the middle of T4. It floats to tri-state off during local bus "hold

acknowledge".

(vii) HOLD & HLDA (I/O): Hold and Hold Acknowledge: Hold indicates that another master is

requesting a local bus "HOLD". To be acknowledged, HOLD must be active HIGH. The

processor receiving the "HOLD " request will issue HLDA (HIGH) as an acknowledgement in

the middle of the T1-clock cycle. Simultaneous with the issue of HLDA, the processor will float

the local bus and control lines. After "HOLD" is detected as being Low, the processor will lower

the HLDA and when the processor needs to run another cycle, it will again drive the local bus

and control lines.

Maximum Mode : The following pins function descriptions are for the 8086/8088 systems in

maximum mode (i.e.. MN/MX = 0). Only the pins which are unique to maximum mode are

described below.

(i) S2, S1, S0 (O): Status Pins: These pins are active during T4, T1 and T2 states and is

returned to passive state (1,1,1 during T3 or Tw (when ready is inactive). These are used by the

8288 bus controller to generate all memory and I/O operation) access control signals. Any

change by S2, S1, S0 during T4 is used to indicate the beginning of a bus cycle. These status

lines are encoded as shown in table 1.1.

Table 1.1:

 S2 S1 S0 Chracteristics

 0 0 0 Interrupt acknowledge

 0 0 1 Read I/O port

 0 1 0 Write I/O port

 0 1 1 Halt

 1 0 0 Code access 1 0 1 Read memory

 1 1 0 Write memory

 1 1 1 Passive state

(ii) QS0, QS1 (O): Queue – Status: Queue Status is valid during the clock cycle after which

the queue operation is performed. QS0, QS1 provide status to allow external tracking of the

internal 8086 instruction queue. The condition of queue status is shown in table 1.2. Queue status

20

allows external devices like In-circuit Emulators or special instruction set extension co-

processors to track the CPU instruction execution. Since instructions are executed from the 8086

internal queue, the queue status is presented each CPU clock cycle and is not related to the bus

cycle activity. This mechanism allows (1) A processor to detect execution of a ESCAPE

instruction which directs the co- processor to perform a specific task and (2) An in-circuit

Emulator to trap execution of a specific memory location.

Table:1.2

 QS0 QS1 Chracteristics

 0 0 No operation

 0 1 First byte of opcode from queue

 1 0 Empty the queue

 1 1 Subsequent byte from queue

(iii) LOCK (O): It indicates to another system bus master, not to gain control of the system bus

while LOCK is active Low. The LOCK signal is activated by the "LOCK" prefix instruction and

remains active until the completion of the instruction. This signal is active Low and floats to tri-

state OFF during 'hold acknowledge'.

Example: LOCK XCHG reg., Memory ; Register is any register and memory GT0

 ; is the address of the semaphore.

(iv) RQ/GT0 and RQ/GT1 (I/O): Request/Grant: These pins are used by other processors in a

multi processor organization. Local bus masters of other processors force the processor to release

the local bus at the end of the processors current bus cycle. Each pin is bi-directional and has an

internal pull up resistors. Hence they may be left un-connected.

1.7. General purpose registers

8086 CPU has 8 general purpose registers, each register has its own name:

 AX - the accumulator register (divided into AH / AL):

o Generates shortest machine code

o Arithmetic, logic and data transfer

o One number must be in AL or AX

o Multiplication & Division

o Input & Output

 BX - the base address register (divided into BH / BL).

21

 CX - the count register (divided into CH / CL):

o Iterative code segments using the LOOP instruction

o Repetitive operations on strings with the REP command

o Count (in CL) of bits to shift and rotate

 DX - the data register (divided into DH / DL):

 DX:AX concatenated into 32-bit register for some MUL and DIV operations

Specifying ports in some IN and OUT operations

 . SI - source index register:

o Can be used for pointer addressing of data

o Used as source in some string processing instructions

o Offset address relative to DS

 . DI - destination index register: Can be used for pointer addressing of data used as

destination in some string processing instructions.

 Offset address relative to ES

 BP - base pointer:

o Primarily used to access parameters passed via the stack

o Offset address relative to SS

 SP - stack pointer:

o Always points to top item on the stack

o Offset address relative to SS

o Always points to word (byte at even address)

o An empty stack will had SP = FFFEh

1.8. Segment registers

 CS - points at the segment containing the current program.

 DS - generally points at segment where variables are defined.

 ES - extra segment register, it's up to a coder to define its usage.

 SS - points at the segment containing the stack.

Although it is possible to store any data in the segment registers, this is never a good idea. The

segment registers have a very special purpose - pointing at accessible blocks of memory.

22

Segment registers work together with general purpose register to access any memory value. For

example if we would like to access memory at the physical address 12345h (hexadecimal), we

should set the DS = 1230h and SI = 0045h. This is good, since this way we can access much

more memory than with a single register that is limited to 16 bit values. CPU makes a calculation

of physical address by multiplying the segment register by 10h and adding general purpose

register to it (1230h * 10h + 45h = 12345h): The address formed with 2 registers is called an

effective address. By default BX, SI and DI registers work with DS segment register;

BP and SP work with SS segment register. Other general purpose registers cannot form an

effective address. Also, although BX can form an effective address, BH and BL cannot.

1.9. Special purpose registers

 IP - the instruction pointer:

o Always points to next instruction to be executed

o Offset address relative to CS

IP register always works together with CS segment register and it points to currently executing

instruction.

1.10. Register

 Flags Register - determines the current state of the processor.

Flags Register is modified automatically by CPU after mathematical operations, this

allows to determine the type of the result, and to determine conditions to transfer control

to other parts of the program. Generally we cannot access these registers directly.

 Carry Flag (CF) - this flag is set to 1 when there is an unsigned overflow. For example

when you add bytes 255 + 1 (result is not in range 0...255). When there is no overflow

this flag is set to 0.

 Parity Flag (PF) - this flag is set to 1 when there is even number of one bits in result,

and to 0 when there is odd number of one bits. Even if result is a word only 8 low bits are

analyzed.

 Auxiliary Flag (AF) - set to 1 when there is an unsigned overflow for low nibble (4 bits).

 Zero Flag (ZF) - set to 1 when result is zero. For none zero result this flag is set to 0.

 Sign Flag (SF) - set to 1 when result is negative. When result is positive it is set to 0.

Actually this flag take the value of the most significant bit.

 Trap Flag (TF) - Used for on-chip debugging.

 Interrupt enable Flag (IF) - when this flag is set to 1 CPU reacts to interrupts from

external devices.

 Direction Flag (DF) - this flag is used by some instructions to process data chains, when

this flag is set to 0 - the processing is done forward, when this flag is set to 1 the

processing is done backward.

23

 Overflow Flag (OF) - set to 1 when there is a signed overflow. For example, when you

add bytes 100 + 50 (result is not in range -128...127).

 Flags Instructions
o CLI - Clear Interrupt Flag

o CLD - Clear Direction Flag

o CLC - Clear Carry Flag

o STC - Set Interrupt Flag

o STD - Set Direction Flag

o STC - Set Carry Flag

1.11. Interrupts of 8086

 There are two main types of interrupt in the 8086 microprocessor, internal and external

hardware interrupts. Hardware interrupts occur when a peripheral device asserts an interrupt

input pin of the microprocessor. Whereas internal interrupts are initiated by the state of the CPU

(e.g. divide by zero error) or by an instruction.

Provided the interrupt is permitted, it will be acknowledged by the processor at the end of the

current memory cycle. The processor then services the interrupt by branching to a special service

routine written to handle that particular interrupt. Upon servicing the device, the processor is

then instructed to continue with what is was doing previously by use of the "return from

interrupt" instruction.

The status of the programme being executed must first be saved. The processors registers will be

saved on the stack, or, at very least, the programme counter will be saved. Preserving those

registers which are not saved will be the responsibility of the interrupt service routine. Once the

programme counter has been saved, the processor will branch to the address of the service

routine.

(i) Edge or Level sensitive Interrupts

Edge level interrupts are recognised on the falling or rising edge of the input signal. They are

generally used for high priority interrupts and are latched internally inside the processor. If this

latching was not done, the processor could easily miss the falling edge (due to its short duration)

and thus not respond to the interrupt request.

Level sensitive interrupts overcome the problem of latching, in that the requesting device holds

the interrupt line at a specified logic state (normally logic zero) till the processor acknowledges

the interrupt. This type of interrupt can be shared by other devices in a wired 'OR' configuration,

which is commonly used to support daisy chaining and other techniques.

(ii) Maskable Interrupts

The processor can inhibit certain types of interrupts by use of a special interrupt mask bit. This

mask bit is part of the flags/condition code register, or a special interrupt register. In the 8086

24

microprocessor if this bit is clear, and an interrupt request occurs on the Interrupt Request input,

it is ignored.

(iii) Non-Maskable Interrupts

There are some interrupts which cannot be masked out or ignored by the processor. These are

associated with high priority tasks which cannot be ignored (like memory parity or bus faults). In

general, most processors support the Non-Maskable Interrupt (NMI). This interrupt has absolute

priority, and when it occurs, the processor will finish the current memory cycle, then branch to a

special routine written to handle the interrupt request.

(iv) Advantages of Interrupts

Interrupts are used to ensure adequate service response times by the processing. Sometimes, with

software polling routines, service times by the processor cannot be guaranteed, and data may be

lost. The use of interrupts guarantees that the processor will service the request within a specified

time period, reducing the likelihood of lost data.

(v) Interrupt Latency

The time interval from when the interrupt is first asserted to the time the CPU recognises it. This

will depend much upon whether interrupts are disabled, prioritized and what the processor is

currently executing. At times, a processor might ignore requests whilst executing some

indivisible instruction stream (read-write-modify cycle). The figure that matters most is the

longest possible interrupt latency time.

(vi) Interrupt Response Time

The time interval between the CPU recognising the interrupt to the time when the first

instruction of the interrupt service routine is executed. This is determined by the processor

architecture and clock speed.

25

UNIT-II

Instruction set of 8085 and Assembly language Programming

2.1. Software:

 Software is a collection of instructions that enable the user to interact with a computer, its

hardware, or perform tasks. Without software, computers would be useless.

Examples and types of software: Below is a list of the different kinds of software

 Software Example

 1. Antivirus AVG, McAfee, Housecall

 2. Email Outlook, Thunderbird

 3. Operating systems Mac OS X10, Windows XP, Windows 7

 4.Database Accsee, MySQL, SQL

 5. Audio/music program iTunes, WinAmp

 6. Spreadsheet Excel

 7. Wordprocessor Word

 8. Programming languages C++, Java, HTML, VB, Fortran, Perl

 9. Internet browser Firefox, Google Chrome, Internet Explorer

 10. Photo/Graphis program Adobe Photoshop, CorelDraw

2.2. What is Assembly Language?

 Assembly language is a low-level programming language for a computer. Assembly

language is converted into executable machine code by a utility program referred to as an

assembler like NASM, MASM, etc.

2.3 Advantages of Assembly Language

 Having an understanding of assembly language makes one aware of −

 How programs interface with OS, processor, and BIOS;

 How data is represented in memory and other external devices;

 How the processor accesses and executes instruction;

 How instructions access and process data;

 How a program accesses external devices.

 Other advantages of using assembly language are −

 It requires less memory and execution time;

 It allows hardware-specific complex jobs in an easier way;

 It is suitable for time-critical jobs;

26

 It is most suitable for writing interrupt service routines and other memory resident

program.

2.3. Assembler:

 An assembler program creates object code by translating combinations of mnemonics and

syntax for operations and addressing modes into their numerical equivalents. This representation

typically includes an operation code ("opcode") as well as other control bits and data. The

assembler also calculates constant expressions and resolves symbolic names for memory

locations and other entities. Most assemblers also include macro facilities for performing textual

substitution – e.g., to generate common short sequences of instructions as inline, instead of

called subroutines.

Some assemblers may also be able to perform some simple types of instruction set-specific

optimizations. One concrete example of this may be the ubiquitous x86 assemblers from various

vendors. Most of them are able to perform jump-instruction replacements (long jumps replaced

by short or relative jumps) in any number of passes, on request.

Like early programming languages such as Fortran, Algol, Cobol and Lisp, assemblers have been

available since the 1950s and the first generations of text based computer interfaces. There may

be several assemblers with different syntax for a particular CPU or instruction set architecture.

For instance, an instruction to add memory data to a register in a x86-family processor might be

add eax,[ebx], in original Intel syntax, whereas this would be written addl (%ebx),%eax in

the AT&T syntax used by the GNU Assembler.

Number of passes

There are two types of assemblers based on how many passes through the source are needed to

produce the executable program.

 One-pass assemblers go through the source code once. Any symbol used before it is

defined will require "errata" at the end of the object code (or, at least, no earlier than the

point where the symbol is defined) telling the linker or the loader to "go back" and

overwrite a placeholder which had been left where the as yet undefined symbol was used.

 Multi-pass assemblers create a table with all symbols and their values in the first passes,

then use the table in later passes to generate code.

In both cases, the assembler must be able to determine the size of each instruction on the initial

passes in order to calculate the addresses of subsequent symbols. The original reason for the use

of one-pass assemblers was speed of assembly – often a second pass would require rewinding

and rereading the program source on tape or rereading a deck of cards or punched paper tape.

With modern computers this has ceased to be an issue. The advantage of the multi-pass

assembler is that the absence of errata makes the linking process faster.

High-level assemplers: More sophisticated high-level assemblers provide language abstractions

such as:

27

 High-level procedure/function declarations and invocations

 Advanced control structures

 High-level abstract data types, including structures/records, unions, classes, and sets

 Sophisticated macro processing

 Object-oriented programming features such as classes, objects, abstraction,

polymorphism, and inheritance.

2.4. Assembler directives:

 Assembly directives, also called pseudo-opcodes, pseudo-operations or pseudo-ops, are

commands given to an assembler "directing it to perform operations other than assembling

instructions." Directives affect how the assembler operates and "may affect the object code, the

symbol table, the listing file, and the values of internal assembler parameters." Sometimes the

term pseudo-opcode is reserved for directives that generate object code, such as those that

generate data. The names of pseudo-ops often start with a dot to distinguish them from machine

instructions. Pseudo-ops can make the assembly of the program dependent on parameters input by

a programmer, so that one program can be assembled different ways, perhaps for different

applications. Or, a pseudo-op can be used to manipulate presentation of a program to make it easier

to read and maintain. Another common use of pseudo-ops is to reserve storage areas for run-time

data and optionally initialize their contents to known values.

 Symbolic assemblers let programmers associate arbitrary names (labels or symbols) with

memory locations and various constants. Usually, every constant and variable is given a name so

instructions can reference those locations by name, thus promoting self-documenting code. In

executable code, the name of each subroutine is associated with its entry point, so any calls to a

subroutine can use its name. Inside subroutines, GOTO destinations are given labels. Some

assemblers support local symbols which are lexically distinct from normal symbols (e.g., the use

of "10$" as a GOTO destination).

 Some assemblers, such as NASM provide flexible symbol management, letting programmers

manage different namespaces, automatically calculate offsets within data structures, and assign

labels that refer to literal values or the result of simple computations performed by the assembler.

Labels can also be used to initialize constants and variables with relocatable addresses.

Assembly languages, like most other computer languages, allow comments to be added to

program source code that will be ignored during assembly. Judicious commenting is essential in

assembly language programs, as the meaning and purpose of a sequence of binary machine

instructions can be difficult to determine. The "raw" (uncommented) assembly language

generated by compilers or disassemblers is quite difficult to read when changes must be made.

2.5. The 8085 Addressing Modes :

 The instructions MOV B, A or MVI A, 82H are to copy data from a source into a destination. In

these instructions the source can be a register, an input port, or an 8-bit number (00H to FFH).

Similarly, a destination can be a register or an output port. The sources and destination are

28

operands. The various formats for specifying operands are called the addressing modes. For

8085, they are:

 (i). Immediate addressing.

 (ii) Register addressing.

 (iii) Direct addressing.

 (iv) Indirect addressing.

(i) Immediate addressing:

 Data is present in the instruction. Load the immediate data to the destination provided.

 Example: MVI R, data

(ii) Register addressing :

 Data is provided through the registers. Example: MOV Rd, Rs

(iii) Direct addressing:

 Used to accept data from outside devices to store in the accumulator or send the data

stored in the accumulator to the outside device. Accept the data from the port 00H and store them

into the accumulator or send the data from the accumulator to the port 01H.

 Example: IN 00H or OUT 01H

(iv) Indirect Addressing:

 This means that the Effective Address is calculated by the processor. And the contents of the

address is used to form a second address. The second address is where the data is stored. Note

that this equires several memory accesses; two accesses to retrieve the 16-bit address and a

further access (or accesses) to retrieve the data which is to be loaded into the register.

2.6. Instruction Set Classification:

 An instruction is a binary pattern designed inside a microprocessor to perform a specific

function. The entire group of instructions, called the instruction set, determines what functions

the microprocessor can perform. These instructions can be classified into the following five

functional categories: data transfer (copy) operations, arithmetic operations, logical operations,

branching operations, and machine-control operations.

(i) Data Transfer (Copy) Operations:

 This group of instructions copy data from a location called a source to another location

called a destination, without modifying the contents of the source. The various types of data

transfer (copy) are listed below together with examples of each type:

29

 Types Examples

 1. Between Registers. 1. Copy the contents of the register B

 into register D.

 2. Specific data byte 32H to a register 2. Load register B with the data byte or a

 memory location. .

 3. Between a memory location and a 3. From a memory location 2000H to

 register. register B.

 4. Between an I/O device and the 4. From an input keyboard to the

 accumulator. accumulator.

(ii) Arithmetic Operations These instructions perform arithmetic operations such as addition,

subtraction, increment, and decrement.

 Addition - Any 8-bit number, or the contents of a register or the contents of a memory location

can be added to the contents of the accumulator and the sum is stored in the accumulator. No two

other 8-bit registers can be added directly (e.g., the contents of register B cannot be added

directly to the contents of the register C). The instruction DAD is an exception; it adds 16-bit

data directly in register pairs.

 Subtraction – Any 8-bit number, or the contents of a register, or the contents of a memory

location can be subtracted from the contents of the accumulator and the results stored in the

accumulator. The subtraction is performed in 2's compliment, and the results if negative, are

expressed in 2's complement. No two other registers can be subtracted directly.

 Increment/Decrement - The 8-bit contents of a register or a memory location can be

incremented or decrement by 1. Similarly, the 16-bit contents of a register pair (such as BC) can

be incremented or decrementd by 1. These increment and decrement operations differ from

addition and subtraction in an important way; i.e., they can be performed in any one of the

registers or in a memory location.

(iii) Logical Operations : These instructions perform various logical operations with the

contents of the accumulator. AND, OR, Exclusive-OR. Any 8-bit number, or the contents of a

register, or of a memory location can be logically ANDed, Ored, or Exclusive-ORed with the

contents of the accumulator. The results are stored in the ccumulator.

 Rotate- Each bit in the accumulator can be shifted either left or right to the next position.

 Compare- Any 8-bit number, or the contents of a register, or a memory location can be

compared for equality, greater than, or less than, with the contents of the accumulator.

 Complement - The contents of the accumulator can be complemented. All 0s are replaced by 1s

and all 1s are replaced by 0s.

30

(iv) Branching Operations : This group of instructions alters the sequence of program

execution either conditionally or unconditionally.

 Jump - Conditional jumps are an important aspect of the decision-making process in the

programming. These instructions test for a certain conditions (e.g., Zero or Carry flag) and alter

the program sequence when the condition is met. In addition, the instruction set includes an

instruction called unconditional jump.

Call, Return, and Restart - These instructions change the sequence of a program either by calling

a subroutine or returning from a subroutine. The conditional Call and Return instructions also

can test condition flags.

(v) Machine Control Operations : These instructions control machine functions such as Halt,

Interrupt, or do nothing. The microprocessor operations related to data manipulation can be

summarized in four functions:

 1. copying data

 2. performing arithmetic operations

 3. performing logical operations

 4. testing for a given condition and alerting the program sequence

Some important aspects of the instruction set are noted below:

1. In data transfer, the contents of the source are not destroyed; only the contents of the

destination are changed. The data copy instructions do not affect the flags.

2. Arithmetic and Logical operations are performed with the contents of the accumulator, and the

results are stored in the accumulator (with some expectations). The flags are affected according

to the results.

3. Any register including the memory can be used for increment and decrement.

4. A program sequence can be changed either conditionally or by testing for a given data

condition.

2.7. Instruction Format

 An instruction is a command to the microprocessor to perform a given task on a specified

data. Each instruction has two parts: one is task to be performed, called the operation code

(opcode), and the second is the data to be operated on, called the operand. The operand (or data)

can be specified in various ways. It may include 8-bit (or 16-bit) data, an internal register, a

memory location, or 8-bit (or 16-bit) address. In some instructions, the operand is implicit.

Instruction word size

 The 8085 instruction set is classified into the following three groups according to word size:

31

 (i). One-word or 1-byte instructions

 (ii). Two-word or 2-byte instructions

 (iii). Three-word or 3-byte instructions

 In the 8085, "byte" and "word" are synonymous because it is an 8-bit microprocessor. However,

instructions are commonly referred to in terms of bytes rather than words.

(i) One-Byte Instructions: A 1-byte instruction includes the opcode and operand in the same

byte. Operand(s) are internal register and are coded into the instruction.

For example:

Task Opcode Operand Binary Code Hex Code

Copy the contents of MOV C, A 0100 1111 4FH

the accumulator in

the register C.

Add the contents of ADD B 1000 0000 80H

register B to the contents

of the accumulator

Invert (compliment) each CMA --- 0010 1111 2FH

bit in the accumulator.

 These instructions are 1-byte instructions performing three different tasks. In the first

instruction, both operand registers are specified. In the second instruction, the operand B is

specified and the accumulator is assumed. Similarly, in the third instruction, the accumulator is

assumed to be the implicit operand. These instructions are stored in 8-bit binary format in

memory; each requires one memory location.

(ii) Two-Byte Instructions: In a two-byte instruction, the first byte specifies the operation code

and the second byte specifies the operand. Source operand is a data byte immediately following

the opcode.

For example:

Task Opcode Operand Binary Code Hex Code

Load an 8-bit data MVI A, Data 0011 1110 3E (First byte)

byte in the accumulator

. Data Data (Second Byte)

Assume that the data byte is 32H. The assembly language instruction is written as

32

 Mnemonics Hex code

 MVI A, 32H 3E, 32H

(iii) Three-Byte Instructions : In a three-byte instruction, the first byte specifies the opcode,

and the following two bytes specify the 16-bit address. Note that the second byte is the low-order

address and the third byte is the high-order address. opcode + data byte + data byte

 For example:

 Task Opcode Operand Hex Code

Transfer the program JMP 2085H C3- First byte

sequence to the memory 85- Second Byte

location 2085H 20- Third Byte

This instruction would require three memory locations to store in memory.

Three byte instructions - opcode + data byte + data byte

2.8. Clock cycle

 The speed of a computer processor, or CPU, is determined by the clock cycle (Fig.2.1), which

is the amount of time between two pulses of an oscillator. Generally speaking, the higher number

of pulses per second, the faster the computer processor will be able to process information. The

clock speed is measured in Hz, typically either megahertz (MHz) or gigahertz (GHz). For

example, a 4GHz processor performs 4,000,000,000 clock cycles per second.

 Computer processors can execute one or more instructions per clock cycle, depending on the

type of processor. Early computer processors and slower processors can only execute one

instruction per clock cycle, but faster, more advanced processors can execute multiple

instructions per clock cycle, processing data more efficiently.

 Fig.2.1.: Clock Signal

2.9. Machine cycle:

 The steps performed by the computer processor for each machine language instruction received.

The machine cycle is a 4 process cycle that includes reading and interpreting the machine

language, executing the code and then storing that code.

33

 Four steps of Machine cycle:

1. Fetch - Retrieve an instruction from the memory.

2. Decode - Tranlate the retrieved instruction into a series of computer commands.

3. Execute - Execute the computer commands.

4. Store – Save and write the results back in memory.

Fig.2.2 Machine cycle

 Each machine cycle is composed of many clock cycle. Since, the data and instructions, both are

stored in the memory, the μP performs fetch operation to read the instruction or data and then

execute the instruction. The μP in doing so may take several cycles to perform fetch and execute

operation. The 3-status signals : IO / M, S1, and S0 are generated at the beginning of each

machine cycle. The unique combination of these 3-status signals identify read or write operation

and remain valid for the duration of the cycle. Table-2.1 shows details of the unique

combination of these status signals to identify different machine cycles.

Table 2.1: Machine cycle status and control signals

34

Thus, time taken by any μP to execute one instruction is calculated in terms of the clock period.

The execution of instruction always requires read and writes operations to transfer data to or

from the μP and memory or I/O devices. Each read/ write operation constitutes one machine

cycle (MC1) as indicated in Fig. 2.3. Each machine cycle consists of many clock periods/

cycles, called T-states. Each and every operation inside the microprocessor is under the control

of the clock cycle. The clock signal determines the time taken by the microprocessor to execute

any instruction. The clock cycle shown in Fig. 2.3 has two edges (leading and trailing or

lagging). State is defined as the time interval between 2-trailing or leading edges of the clock.

Machine cycle is the time required to transfer data to or from memory or I/O devices.

 Fig.2.3 Machine cycles showing clock periods

2.10. Processor cycle - Instruction cycle

 The function of the microprocessor is divided into fetch and execute cycle of any instruction

of a program. The program is nothing but number of instructions stored in the memory in

sequence. In the normal process of operation, the microprocessor fetches (receives or reads) and

executes one instruction at a time in the sequence until it executes the halt (HLT) instruction.

Thus, an instruction cycle is defined as the time required to fetch and execute an instruction. For

executing any program, basically 2-steps are followed sequentially with the help of clocks

1. Fetch, and

2. Execute.

 The time taken by the μP in performing the fetch and execute operations are called fetch and

execute cycle. Thus, sum of the fetch and execute cycle is called the instruction cycle as

indicated in Fig. 2.4.

 Instruction Cycle (IC) = Fetch cycle (FC) + Execute Cycle (EC)

Fig.2.4 Processor Cycle

35

Instruction Fetch (FC) ⇒ An instruction of 1 or 2 or 3-bytes is extracted from the memory

locations during the fetch and stored in the μP‟s instruction register.

Instruction Execute (EC) ⇒ The instruction is decoded and translated into specific activities

during the execution phase. Thus, in an instruction cycle, instruction fetch, and instruction

execute cycles are related as depicted in Fig. 2.4. Every instruction cycle consists of 1, 2, 3, 4 or

5-machine cycles as indicated in Fig. 2.5. One machine cycle is required each time the μP access

memory or I/O port. The fetch cycle, in general could be 4 to 6-states whereas the execute cycle

could of 3 to 6-states. The 1st machine cycle of any instruction is always the fetch cycle that

provides identification of the instruction to be executed.

 The fetch portion of an instruction cycle requires one machine cycle for each byte of

instruction to be fetched. Since instruction is of 1 to 3 bytes long, the instruction fetch is one to

3-machine cycles in duration. The 1st machine cycle in an instruction cycle is always an opcode

fetch. The 8-bits obtained during an opcode fetch are always interpreted as the Opcode of an

instruction. The machine cycle including wait states is shown in Fig. 2.5

 Fig.2.5 Machine cycles including wait states

2.11. Timing diagram of Opcode fetch

 The process of opcode fetch operation requires minimum 4-clock cycles T1, T2, T3, and T4

and is the 1st machine cycle (M1) of every instruction.

Example

 Fetch a byte 41H stored at memory location 2105H. For fetching a byte, the microprocessor

must find out the memory location where it is stored. Then provide condition (control) for data

flow from memory to the microprocessor. The process of data flow and timing diagram of fetch

operation are shown in Figs. 2.6 (a), (b), and (c). The μP fetches opcode of the instruction from

the memory as per the sequence below

 • A low IO / M means microprocessor wants to communicate with memory.

 • The μP sends a high on status signal S1 and S0 indicating fetch operation.

 • The μP sends 16-bit address. AD bus has address in 1st clock of the 1st machine

 cycle,T1.

36

 • AD7 to AD0 address is latched in the external latch when ALE = 1.

 • AD bus now can carry data.

 • In T2, the RD control signal becomes low to enable the memory for read operation.

 • The memory places opcode on the AD bus

 • The data is placed in the data register (DR) and then it is transferred to IR.

 Fig. 2.6(a) Opcode Fetch

• During T3 the RD signal becomes high and memory is disabled.

• During T4 the opcode is sent for decoding and decoded in T4.

• The execution is also completed in T4 if the instruction is single byte.

• More machine cycles are essential for 2- or 3-byte instructions. The 1st machine cycle M1 is

 meant for fetching the opcode. The machine cycles M2 and M3 are required either to read/

 write data or address from the memory or I/O devices.

Example

 Opcode fetch MOV B,C.

T1: The 1st clock of 1st machine cycle (M1) makes ALE high indicating address latch enabled

which loads low-order address 00H on AD7⇔AD0 and high-order address 0H simultaneously

on A15⇔A8 . The address 00H is latched in T1.

T2: During T2clock, the microprocessor issues RD control signal to enable the memory and

memory places 41H from 1000H location on the data bus. Fig. 2.6(b) Data flow from memory to

microprocessor

37

 Fig.2.6(b) Data flow from memory to microprocessor

T3: During T3, the 41H is placed in the instruction register and RD = 1 (high) disables signal. It

means the memory is disabled in T3 clock cycle. The opcode cycle is completed by end of T3

clock cycle.

T4: The opcode is decoded in T4 clock and the action as per 41H is taken accordingly. In

otherword, the content of C-register is copied in B-register. Execution time for opcode 41H is

 Clock frequency of 8085 = 3.125 MHz

 Time (T) for one clock = 1/3.125 MHz = 325.5 ns = 0.32 μS

Execution time for opcode fetch = 4T = 4*0.32 μS = 1.28 μS

 Fig.2.6 (c) Opcode fetch (MOV B,C)

38

2.12. Read Cycle

 The high order address (A15 ⇔A8) and low order address (AD7⇔AD0) are asserted on 1st

low going transition of the clock pulse. The timing diagram for IO/ M read are shown in Fig. 2.7

(a) and (b). The A15 ⇔ A8 remains valid in T1, T2, and T3 i.e. duration of the bus cycle, but

AD 7 ⇔ AD0 remains valid only in T1. Since it has to remain valid for the whole bus cycle, it

must be saved for its use in the T2 and T3. Fig. 2.7 (a) Memory read timing diagram ALE is

asserted at the beginning of T1 of each bus cycle and is negated towards the end of T1. ALE is

active during T1 only and is used as the clock pulse to latch the address (AD7⇔AD0) during

T1. The RD is asserted near the beginning of T2. It ends at the end of T3. As soon as the RD

becomes active, it forces the memory or I/O port to assert data. RD becomes inactive towards

the end of T3, causing the port or memory to terminate the data.

Fig. 2.7(b) I/O Read timing diagram

 Fig.2.7(a) Memory read timing diagram

 Fig. 2.7 (b) I/O Read Timing diagram

39

2.13. Write Cycle

 Immediately after the termination of the low order address, at the beginning of the T2, data is

asserted on the address/data bus by the processor. WR control is activated near the start of T2

and becomes inactive at the end of T3. The processor maintains valid data until after WR is

terminated. This ensures that the memory or port has valid data while WR is active. It is clear

from Figs. 2.8 (a) and (b) that for READ bus cycle, the data appears on the bus as a result of

activating RD and for the WR bus cycle, the time the valid data is on the bus overlaps the time

that the WR is active. Fig. 2.8 (a) Memory write timing diagram. Fig. 2.8(b) I/O write timing

diagram

 Fig.2.8(a) Memory write timing diagram

 Fig.2.8 (b) I/O write timing diagram

40

2.14 Programming the 8085A:

 A Program is a set of instructions arranged in a sequence to do a specific task.

 Programming: It is the process of writing the set of instructions.

 Assembly Language Programme: The program with alphanumeric characters or mnemonic is

known as assembly language program

Mnemonics: The program makes use of symbolic opcodes known as mnemonics.

An assembly language program (ALP) has the following fields:

 1. Label

 2. opcode

 3. operand

 4. comments

The ALP instruction format is shown below

Label opcode operand comments

Loc1 MVI A, 18H Move the data 18H to the accumulator

Sample Programs:

1. Write an ALP to perform the addition of two 8-bit numbers (data)

 Example: Store the data 24H and 39H in memory locations 1020 and 1021 respectively. Add

them and store the result in the memory location 1022.

Memory location Mnemonics Opcode
 1000 LDA 1020 3A

 1001 20

 1002 10

 1003 MOV B,A 47

 1004 LDA 1021 3A

 1005 21

 1006 10

 1007 ADD B 80

 1008 STA 1022 32

 1009 22

 100A 10

 100B HLT 76

41

2. Write an ALP to perform the addition of the given two numbers- FFH & 24H

 Example: Add the data FFH and 24H and store the result in the memory locations 1050 and

1051.

Memory location Label Mnemonics Opcode
 1000 LXI,H 1020 21

 1001 20

 1002 10

 1003 MVI C, 00 0E

 1004 00

 1005 MOV A,M 7E

 1006 INX H 23

 1007 ADD M 86

 1008 JNC LOOP (100C) D2

 1009 0C

 100A 10

 100B INR C 0C

 100C LOOP STA 1050 32

 100 D 50

 100E 10

 100F MOV A,C 79

 1010 STA 1051 32

 1011 51

 1012 10

 1013 HLT 76

3. Write an ALP to perform the addition of two 16-bit numbers (data)

 Example: Add the data F1B2H and 213H and store the result in the memory locations 1090,

1091 and 1092..

Memory location Label Mnemonics Opcode

 1000 LXI,H F1B2 21

 1001 B2

 1002 F1

 1003 XCHG EB

 1004 LXI H ,213C 21

 1005 3C

 1006 21

 1007 DAD D 19

 1008 SHLD 1092 22

 1009 92

 100A 10

 100B MVI A, 00 3E

 100C 00

 100 D ADC A 8F

42

 100E STA 1094 32

 100F 94

 1010 10

 1011 HLT 76

 4. Write an ALP to perform the subtraction of the given two 8-bit and 16-bit numbers

 Example: Subtract two 8-bit numbers and store the result in memory location 2500H

Memory location Label Mnemonics Opcode

 1000 LDA 1500 3A

 1001 00

 1002 15

 1003 MOV B, A 47

 1004 LDA 1501 3A

 1005 01

 1006 15

 1007 SUB B 90

 1008 STA 2500 32

 1009 00

 100A 25

 100B HLT 76

5. Example: Subtract EA50H from F985H and store the result in memory location 2500 and

2501 using subroutine.

Memory location Label Mnemonics Opcode

 1000 MVI B, 00 06

 1001 00

 1002 LHLD 1050 2A

 1003 50

 1004 10

 1005 XCHG EB

 1006 LHLD 1052 2A

 1007 52

 1008 10

 1009 CALL SUB1 CD

 100A 1C

 100B 10

 100C DAD D 19

 100 D JC LOOP1 DA

 100E 14

 100F 10

 1010 CALL SUB1 CD

43

 1011 1C

 1012 10

 1013 INR B 04

 1014 LOOP1 SHLD 2500 22

 1015 00

 1016 25

 1017 MOV A,B 78

 1018 SHLD 2502 22

 1019 02

 101A 25

 101B HLT 76

 101C SUB1 MOV A,L 7D

 101D CMA 2F

 101E MOV L,A 6F

 101F MOVA,H 7C

 1020 CMA 2F

 1021 MOV H,A 67

 1022 INX H 23

 1023 RET C9

6. Sum of 8-bit datas in an array

 Example: Add a series of 8-bit numbers (5 data) and store the result in memory location

Memory location Label Mnemonics Opcode

 1000 LXI H, 1020 21

 1001 20

 1002 10

 1003 MOV C,M 4E

 1004 MVI A, 00 00

 1005 LOOP INX H 23

 1006 ADD M 86

 1007 DCR C 0D

 1008 JNZ LOOP C2

 1009 CALL SUB1 CD

 100A 06

 100B 10

 100C STA 1050 32

 100 D 50

 100E 10

 100F HLT 76

44

7. Multiplication of two 8-bit numbers

 Example: Multiply two 8-bit numbers stored at memory locations 1050 and 1051 and store

the result in memory location 1052.

Memory location Label Mnemonics Opcode

 1000 MVI B, 00 06

 1001 00

 1002 LHLD 1050 2A

 1003 50

 1004 10

 1005 XCHG EB

 1006 LHLD 1052 2A

 1007 52

 1008 10

 1009 CALL SUB1 CD

 100A 1C

 100B 10

 100C DAD D 19

 100 D JC LOOP1 DA

 100E 14

 100F 10

 1010 CALL SUB1 CD

 1011 1C

 1012 10

 1013 INR B 04

 1014 LOOP1 SHLD 2500 22

 1015 00

 1016 25

 1017 MOV A,B 78

 1018 SHLD 2502 22

 1019 02

 101A 25

 101B HLT 76

 101C SUB1 MOV A,L 7D

 101D CMA 2F

 101E MOV L,A 6F

 101F MOVA,H 7C

 1020 CMA 2F

 1021 MOV H,A 67

 1022 INX H 23

 1023 RET C9

45

8. Division of two 8-bit numbers

 Example: Write an ALP to divide two 8-bit numbers

 Label Mnemonics Comment

 LDA 6501 H Load the divisor in accumulator

 MOV B, A Move the divisor to B register

 LDA 6500 H Load the dividend in accumulator

 MVI C, 00H Clear C register to store quotient

 STEP 1: CMP B Compare the content of A and B

 JC STEP 2 If divisor < dividend , go to STEP 2

 SUB B Subtract divisor from dividend

 INR C Increment quotient

 JMP STEP 1 continue the subtraction

 STEP 2 STA 6503H Store the accumulator

 MOV A, C Move the content of C to A

 STA 6502 H Store the quotient

9. Ascending order – Sorting of Numbers

 Example: Write an ALP to arrange the data bytes in acending order (sorting of numbers)

Memory Label Mnemonics Comment

Address

4100H LDA 4300 H Load the number of passes from memory into acc.

4103 H MOV B, A Move the data from the acc. to register B

4104 H LOC 5: MOV C, B Move the data from register B into the register C

4105 H LXI H 4400 H Load H-L pair with memory address

 4108 H LOC 3: MOV A, M Move the data from memory location to acc.

 4109 H INX H Increment the content of H-L pair

 410A H CMP M Compare the content of M with acc.

 410B H JC LOC 1 If carry = 1, Go to LOC 1.

 410E H MOV D, M The data in memory pointed by H-L pair is

 transferred to register D

 4110 H DCX H Decrement the content of H-L pair

 4111 H MOV M, D Move the data in register D to H-L pair

 4112 H INX H Increment the content of the H-L pair

 4113 H LOC 1: DCR C Decrement the register C

 4114 H JZ LOC 2 If the counter ≠ 0, jump to LOC 3

 4117 H JMP LOC 3 If the counter = 0, jump to LOC 2

 411A H LOC 2: DCR B Decrement register B (pass counter)

 411B H JZ LOC 4 If the counter = 0, jump to LOC 4

411E H JMP LOC 5 If the counter ≠ 0, jump to LOC 5

46

4121 H LOC 4: HLT Stop

10. To find Two’s compliment

 Example: Write an ALP to find Two‟s compliment of a 16-bit number

 Label Mnemonics Comment

 LXI H, 6501 H Address of 8 LSBs of the given no.

 MOV B, 00 H Clear B register

 MOV A, M Move 8 LSBs to accumulator

 CMA 1‟s compliment of 8 LSBs

 ADI 01 H 2‟s compliment of 8 LSBs

 STA 6503 H Store 8 LSBs of the result

 JNC STEP Jump on no carry to “STEP”

 INR B If carry is available, store in B

 STEP: INX H Address of 8 MSBs of the given no.

 MOV A, M Move 8 MSBs to accumulator

 CMA 1‟s compliment

 ADD B Add carry

 STA 6504 H Store 8 MSBs of the result

 HLT Halt

47

Unit – III

Peripheral Interfacing Devices and Techniques

3.1 What is meant by memory address space?

 It is the maximum possible memory size which can be used with µp.

(i) Address space partitioning:

The allocation of address to memory chips and I/O devices depends on the µp architecture. Some

processors provide only one address space thereby treating I/O devices as memory locations.

Intel 8085 uses a 16- bit wide address bus for addressing memories and I/O devices, using 16- bit

wide address bus it can access 216 = 64𝑘 bytes of memory and I/O devices. The 64k address are

to be assigned to memories and I/O devices for their addressing. There are two schemes for the

allocation of address to memories and input/output devices.

 (a) Memory mapped I/O scheme

 (b) I/O mapped (standard I/O) I/O scheme

(a) Memory mapped I/O scheme:

 I/O devices are connected with the place memory address space called memory mapped

I/O scheme. In this type of I/O, the MPU uses 16 address lines to identity an I/O device, an I/O is

connected as if it is memory resisters. This is known as memory mapped I/O. The MPU uses the

same control signal(memory read or memory write) and instructions as those of memory.

 To transfer data between the MPU and I/O devices, memory related instructions (such as

LDA, STA etc) and memory control signal (𝑀𝐸𝑀𝑅 𝑎𝑛𝑑 𝑀𝐸𝑀𝑊) are used. The microprocessor

communicates with an I/O device as if it were one of the memory locations.

(b) I/O mapped I/O scheme:

 When separate address space is available for I/O device, the I/O devices are connected in

this space. This is I/O mapped scheme. In this scheme, the address assigned to memory locations

can also be assigned to I/O devices. Since the same address may be assigned to a memory

location or an I/O device; The µp must issue a signal to distinguish whether the address on the

address bus if for a memory location or I/O device. The Intel 8085 issues an IO/𝑀 signal for this

purpose. When this signal is high the address bus is for an I/O device. When the signal is low,

the address on the address bus is for a memory location. Two extra instructions IN/OUT are used

to address I/O devices. The IN instructions is used to lead the data of an input device. The output

instruction is used to send data to an output device. This scheme is suitable for a large system.

48

Typically, to display the contents of the accumulator at an output devices.[such as LEDs] with

the address for example, 01H, the instructions will be written and stored in memory as follows:

Memory address Machine codes Mnemonics

2050 D3 Out 01 H

2051 01H

3.2 Difference between memory mapped I/O and I/O mapped I/O scheme:

Memory mapped I/O I/O mapped I/O

I/O ports are also considered as memory

locations.

These are not considered as memory

locations

Considerable memory location are allotted

for I/O ports where instruction and data

cannot be stored

No such problem.

The I/O ports have 16 bit address. Therefore

64k is shared between I/O system and

memory system

The port address will be only 8 bit. Therefore

256 separate I/O devices can be connected.

The I/O map is independent of memory map.

Data transfer between any CPU register and

I/O ports are possible.

Data transfer is possible only in A register

and I/O ports.

LDA,STA instruction are used for I/O

operation and also MOV M, R, MOV R,M

instructions can be used. So I/O operations

are not self-evident from the program listing.

Only IN, OUT instruction are used. So I/O

operation are clearly evident from program

listing.

Main memory space is reduced. Separate memory is used for I/O ports

instructions

Program debugging is difficult Program debugging is easy

Decoding the I/O address is difficult. Simple I/O address system. So decoding is

easier.

Control signal used for Input output are

𝑀𝑅 /𝑀𝑊

Control signals are used for input/output are

𝐼𝐷𝑅 /𝐼𝑂𝑊

Arithmetic or logical operations can be

directly performed with I/O data.

Not possible

3.3 What is meant by I/O address space?

 It is the maximum possible number of I/O device which can be interfaced with a µp.

I/O map: The entire range of I/O addresses from 00 to FF is known as I/O map.

Interfacing: A microprocessor combine with memory and input/output devices forms a

microcomputer. The µp is the heart of a computer. Mnemonics and Input / Output devices are

interfaced to µp to form a microcomputer. In case of large and mini computers the memories and

49

input /output devices are interfaced to CPU by the manufactures. In a µp- based system the

designs has to select suitable memories and I/O devices for his task and interface them to the µp.

The selected memories and I/O devices should be compatible, additional electronic circuit has to

be designed through which the device may be interfaced to the CPU. Fig 3.1. Shows a schematic

diagram to interface memory chips or I/O devices to a µp . An address decoding circuit is

employed to select the required I/O device or a memory chip.

Fig.3.1

Figure 3.2 shows a schematic diagram of a decoding circuit. If IO/𝑀 is high the detector 2 is

activated and the required I/O device is selected. If is IO/𝑀 low, the decoder 1 is activated and

the required memory chip is selected. A flow MSBs of the address lines are applied to the

decodes to select a memory chip or an I/O device. The function of incoding is 10 generate a

binary code, and the process to generating codes is known as incoding . The decoding is the

reverse process of incoding BCD hexa OCTAL, ASCII, EBCDIC etc.

\

Fig.3.2

50

3.4 Memory Interfacing:

 The address of a memory location or an I/O device is sent out by the µp. The

corresponding memory chip or I/O device is selected by a decoding circuit. The decoding task

can be performed by a decoder, a comparator, a bipolar PROM or PLA (Programmed Logic

Array). The most commonly used decodes is 74LS138. If is a 1 to 8 times decoder. Figure 3.3

shows the interface of memory chips through 74L3S138. 𝐺1,𝐺2𝐴 and 𝐺2𝐵 are enable signals. To

enable 74LS138, 𝐺1 should be high and 𝐺2𝐴 and 𝐺2𝐵 should be low. A, B and C are select lines.

By applying proper logic to select lines any one the outputs can be selected. 𝑦0 , 𝑦1, ……… , 𝑦7 are

8 outputs lines. An output line goes low when it is selected other output lines remain high. Table

3.1 shows the truth table for 74LS138, when 𝐺1 is low or 𝐺2𝐴 is high or 𝐺2𝐵 is high, all outputs

lines become high. Thus 74LS138 acts as decoder only when 𝐺1 is high and 𝐺2𝐴 and 𝐺2𝐵 are

low.

 Input Output

 Enable Select

G1 G2A G2B C B A Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

X H H X X X H H H H H H H H

L X X X X X H H H H H H H H

H L L L L L L H H H H H H H

H L L L L H H L H H H H H H

H L L L H L H H L H H H H H

H L L L H H H H H L H H H H

H L L H L L H H H H L H H H

H L L H L H H H H H H L H H

H L L H H L H H H H H H L H

H L L H H H H H H H H H H l

 Table 3.1

 Fig 3.3. Interfacing of memory chips using 74LS138

51

The memory locations for EPROM1 will lie in the range 0000 to 1FFF. These are the memory

locations for zone 0 for the memory chip which is connected to the output line Y0 of the

decodes. Similarly for zone 1 is 2000 to 3FFF and zone 7 is E000 to FFFF. Table 2 shows the

memory locations for various zones.

Decodes output Memory divide Zone of the address

space

Memory locations

address

Y0 EPROM1 Zone 0 0000 to 1FFF

Y1 EPROM2 Zone1 2000 to 3FFF

Y2 RAM1 Zone2 4000 to 5FFF

Y3 RAM2 Zone3 6000 to 7FFF

Y4 RAM3 Zone4 8000 to 9FFF

Y5 RAM4 Zone5 A000 to BFFF

Y6 RAM5 Zone 6 C000 to DFFF

Y7 Ram6 Zone7 E000 to FFFF

 Table 3.2: memory locations for various zone

The entire memory address (64k for 8085) has been divided into 8 zones Address lines A15 , A14

and A13 have been applied to the select lines A, B and C of the 74LSI38. The logic applied to

these lines selects a particular memory device, an EPROM or a RAM other address lines A0 , A1

,………, A12 go directly to the memory chip. They decode the address of the memory location

within a selected memory chip. IO/𝑀 is connected to 𝐺2𝐵 , where IO/𝑀 goes low for memory

read/write operation; 𝐺2𝐵 goes low, G1 is connected to +5V Vdc; supply and 𝐺2𝐴 is grounded.

3.5 I/O interfacing:

 Figure 3.4 shows the interface of I/O devices through decodes 74LS138. As the address bus

are used for I/O addressing. The address lines A8, A9 and A10 have been applied to select lines A,

 Fig 3.4: Interfacing of I/O devices using 74LS138.

52

B and C of the 74LS138. The address lines A11- A15 are applied 𝐺2𝐵 through a NAND Gate. 𝐺2𝐵

becomes low only when all address lines A11 – A15 are high. 𝐺2𝐴 is grounded. IO/𝑀 is connected

to G1. When IO/𝑀 goes high for I/O read/ write operation. G1 goes high. Table 3.3 shows the

address of I/O devices to 741S138.

A15 A14 A13 A12 A11 A10 A9 A8 Selected

output

lines

Corresponding

Address

I/O

device

1 1 1 1 1 0 0 0 Y0 F8 Input

device1

1 1 1 1 1 0 0 1 Y1 F9 Input

device2

1 1 1 1 1 0 1 0 Y2 FA Input

device3

1 1 1 1 1 0 1 1 Y3 FB Output

device1

1 1 1 1 1 1 0 0 Y4 FC Output

device2

1 1 1 1 1 1 0 1 Y5 FD Output

device3

1 1 1 1 1 1 1 0 Y6 FE Unused

1 1 1 1 1 1 1 1 Y7 FF Unused

 Table 3.3: Address of I/O devices connected to 74LS138

3.6 Data transfer scheme:

 To solve the problem of mismatch between a µp and I/O devices a number of data

transfer techniques have been developed. The data transferred between µp and I/O devices is

transferred by one of the following two methods.

 (a) Programmed data transfers.

 (b) Direct memory access transfer.

(a) Programmed data transfers:

 Program data transfer scheme are controlled by CPU. Data transfer between µp and I/O

devices an under the control of programs which reside in the memory. These programs are

executed by the CPU where an I/O device is ready to transfer data. Programmed data transfer are

generally used when a relatively small amount of data is transferred with relatively with

relatively slow I/O devices. Eg: AD, D/A converters etc. In these schemes usually one byte of

data is to be transferred at a time. Programmed data transfer can be further classified as,

53

 (i) Synchronous data transfer.

 (ii) Asynchronous data transfer.

 (iii) Interrupt driven transfer.

(i) Synchronous data transfer:

Synchronous means “at the same time”. When the I/O device and µp match in speed, the

synchronous transfer method is used. Whenever data is to be obtained from the device or

transferred to the device, the user program may issue suitable instruction addressing the device.

At the end of the execution of this instruction, the transfer would have been completed. The

I/O devices compatible with µp in speed are usually not available. Hence the techniques of data

transfer is rarely used for I/O devices. However memory compatible with µp are available, and

therefore this technique is invariably used with compatible memory devices. This is the simplest

of all data transfer schemes. If an output device connected to the 8085in memory mapped mode,

the following instruction may be used for transferring ACC counter to the device.

 MOV m, A

assuming that the address of the device is already stored in HL pair. If the device is connected in

I/O mapped mode, then the out instruction may be issued

 OUT 2

assuming that 2 is the port number associated with this device. Similarly for an input device, the

instruction

 MOV A,M or IN 2.

There are two data transfer synchronizing techniques are available. They are polling and

Interrupts.

(ii) Asynchronous data transfers:

 Asynchronous means “at irregular intervals”. When the I/O device and µp speeds do not

match, asynchronous data transfer may be used. According to this scheme, the µp issues first get

ready instruction to the devices, subsequently the µp keeps waiting until the device get ready.

The µp processes issues a data transfer instruction immediately after the devices get ready. In

order to work, the device should provide a signal which may be tested by the µp to as certain

whether it is ready or not. This form of data transfer is also known as Hand shaking; since some

signals are exchanged between the I/O device and the µp before the actual data transfer takes

place. The µp issues an initiating signal to the I/O device to get ready (or to start). Where I/O

device becomes ready it sends signals to the processor to indicate that it is ready. Such signals

are called hand shake signals. Fig 3.5 shows a schematic diagram for asynchronous data transfer.

54

Asynchronous data transfer is used for slow I/O device. This techniques is an inefficient

technique because the precious time of the µp is wasted in waiting.

Fig.3.5

It may be illustrated as follows.

Begin: Issue instruction to device to get ready.

Repeat: test device ready flag;

 Until device ready;

 Issue instruction to transfer data.

End: The hand shaking may be either software or hardware.

(iii) Interrupt driven data transfer:

 It is an efficient technique as compared with the asynchronous data transfer because

precious time of the µp is not wasted in waiting while an I/O device is getting ready. In this

scheme the µp initiates an I/O device to get ready and then it executes its main program instead

of remaining in a program loop to check the status of the I/O device. When the I/O device

becomes ready to transfer data, it sends a high signal to the µp through a special input line called

an interrupt line. In other wards it interrupts the normal processing sequence of the µp. On

receiving an interrupt, the µp completes the current instruction hand and then attends the I/O

devices. It saves the contents of the program counter on the stack first, and then takes up a

subroutine called ISS(Interrupt Service Subroutine). In executes ISS to transfer data from or to

the ISS device. Different ISS are to be provided for different I/O devices. After completing the

data transfer, the µp returns back to the main program which it was executing before the

interrupt was occurred. Interrupt driven data transfer is used for slow I/O devices.

Example: The following Fig.3.6 shows the interfacing of an A/D converter to transfer data

employing interrupt driven data transfer scheme. The µp sends first, the start a conversion signal,

S/C to the A/D converter. Therefore the µp executes its main program. A/D converter is a slow

55

device compared to the µp. It takes some time to convert analog signal to its equivalent digital

quantity. When A.D converter completes the task of conversion, it makes an end of conversion

signal, E/C high,. The E/C signal is connected to an interrupt line of the µp. when interrupt line

goes high, the µp takes all necessary steps to transfer data from the A/D converter. After

completing the data transfer, the µp returns back to execute the main program that it was

executing prior to the interrupt.

Fig.3.6 Interrupt Driven data transfer scheme for an A/D converter.

3.7 DMA data transfer scheme:

 In DMA data transfer scheme CPU does not participate. Data are directly transferred

from an I/O device to the memory device or vice versa. The data transfer is controlled by the I/O

device or a DMA controller. When a large block of data is to be transferred, DMA is used. It

bulk of data are transferred through CPU, it takes appreciable time and process becomes slow.

An I/O devices which wants to send data using DMA technique, sends to HOLD signal from an

I/O device, the CPU gives the control of buses as soon as the current machine cycle is

completed. The CPU sends HOLD acknowledgement signal to the I/O device to indicate that it

has received the HOLD request and it will give up the buses in the next machine cycle. The I/O

devices takes over the control of buses and directly transfer data to the memory ar reads data

from the memory. DMA transfer scheme is a faster scheme as compared to programmed data

transfer scheme. It is used to transfer data from mass storage devices such as hand disks, floppy

disks etc, it also used for high-speed pointers.

 DMA data transfer schemes are of the following three types.

i. Burst mode(or) Visible DMA data transfer

ii. Cycle stealing techniques (or) Transparent of DMA transfer scheme.

iii. Demand transfer mode DMA.

(i) Burst mode or visible DMA data transfer:

 A scheme of DMA data transfer in which the I/O device withdraws the DMA request

only after all the data bytes have been transferred is called burst mode data transfer. By this

technique a block of data is transferred. This technique is employed by magnetic disk drives. In

56

the middle, magnetic disks transfer cannot be stopped or slowed down without loss of data.

hence block transfer of data is a must cycle stealing techniques or Transparent DMA transfer

schemes. In this technique a long block of data is transferred by a sequence of DMA cycles. In

this method, after transferring one byte or several bytes, the I/O device withdrawn the DMA

request. This method reduces the interference in CPUs activities. The interference can be

eliminated completely by designing an interfacing circuitry which can steel but cycle only when

the CPU is not using the system bus.

(ii) Demand transfer mode DMA:

Whenever the demand is created by the I/O device or memory device, the bulk of data transfer

taking place. In DMA data transfer schemes I/O devices control or data transfer and hence the

I/O devices must have register to store memory addresses and byte count. It must also have some

electronics circuitry to generate necessary control signals required during DMA operations.

Usually I/O devices do not have these facilities. To solve these problems DMA controllers have

been designed and developed. Examples of DMA controller have been designed and developed.

Examples of DMA controllers chips are Intel 8237A, 8257 etc. In Fig.3.7 shows some various

types of data transfer schemes.

Fig.3.7

3.8: 8085 interrupt system:

 Interrupt is a signal send by an external device to the processor so as to request the

processer to program a particular task or work.

 They are three methods of classifying interrupts.

Method 1: The interrupts are classified into hardware and software interrupts.

57

Method 2: The interrupts are classified into vectored and non-vectored interrupts.

Method 3: The interrupts are classified into Maskable and Nonmaskable interrupts.

(i) Software interrupts of 8085A:

 The software interrupts are program instructions when the instruction is executed, the

processor executes an interrupts service routine(ISR) stored in the vector address of the software

interrupt instruction. The software interrupts of 8085 are RSTO, RST1, RST2, RST3, RST4,

RST5, RST6 and RST7. The vector address of software interrupts are given below:

Interrupts Vector address

RST0 0000H

RST1 0008H

RST2 0010H

RST3 0018H

RST4 0020H

RST5 0028H

RST6 0030H

RST7 0038H

When the microprocessor recognizes an interrupt, it saves the processor status in stack. Then it

call and execute an Interrupt Service Routine (ISR). At the end of ISR it restores the processor

status and the program control is transferred to main program. In this way a microprocessor

service an interrupt request.

 The software interrupts of 8085 are vectored interrupts. The software interrupts can not

be masked and they cannot be disabled.

(ii) Hardware interrupts of 8085A:

 The hardware interrupts of 8085 are initiated by an external device by planning an

appropriate signal at the interrupt pin of the processor. The processor keeps on checking the

interrupts pin at the second T-state of last machine cycle of every instruction. If the processor

finds a valid interrupts signal and if the interrupt is unmasked and enabled, then the processor

accepts the interrupts. The acceptance of the interrupts is acknowledged by sending an 𝐼𝑁𝑇𝑅

signal to the interrupted device.

The hardware interrupts of 8085 are TRAP, RST 7.5, RST 6.5, RST 5.5 and INTR. The

TRAP, RST 7.5, RST6.5 and RST 5.5 are vectored interrupts. In vectored interrupts the address

to which the program control is transfer(when the interrupt is accepted) is fixed by the

manufacturer. The vector addresses of hardware interrupts are given below:

58

Interrupts Vector address

RST 7.5 003CH

RST 6.5 0034H

RST 5.5 002CH

TRAP 0024H

INTR and its expansion:

 The INTR is general interrupt request. An external device can interrupt the processor by

placing a high signal on INTR pin of 8085. If the processor accepts the interrupt ,then it will send

an acknowledge signal 𝐼𝑁𝑇𝑅 to the interrupted device. On receiving the acknowledge signal the

interrupted device has to place either an RSTn code and the data bus. On receiving the RSTn

opcode the 8085 processor generate the vector address of RSTn instruction. It saves the content

of program of RSTn instruction. It saves the content of program counter (pc) in stack. Then it

loads the vector address in PC and executes an Interrupt Service Routine (ISR) stored at this

address.

(iii) Vectored and non-vectored interrupt:

 Vectoring is the process of generating the address of interrupt service routine to be loaded

in the program counter. When an interrupt is accepted, if the processes control branches to a

specified address defined by the manufacturer then the interrupts is called vectored interrupts. In

Non-vectored interrupt, there is no specific address for storing the interrupt service routine.

Hence the interrupted device should give the address of the ISR.

3.9 Interfacing devices and I/O devices:

 To communicate with the outside world, µcs use peripherals (I/O devices). Commonly

used peripherals are: A/D converter, D/A converter, CRT, Printers, hard disk, floppy disks,

magnetic tapes etc. Peripherals are connected to the µc through electronic circuits known as

interfacing circuits. Generally each I/O device requires a separate interfacing circuit. The

interfacing circuit converts the data available from an input device into compatible format the

computer. The interface associated with the output device converts the output of the µp into the

desired peripheral format, some of the general purpose interfacing devices are,

1. I/O port

2. Programmable peripheral interface(PPI)

3. DMA controller

4. Interrupt controller

5. Communication interface

6. Programmable counter/ Internal timer

59

Special purpose interfacing devices are designed to interface a particular type of I/O device to

the µp. Example of such devices are:

1. CRT controller

2. Floppy disk controller

3. Keyboard and display interface.

3.10 Generation of control signals for memory and I/O devices:

Intel 8085 issues control signals 𝑅𝐷 , 𝑊𝑅 for read and write operation of memory and I/O

devices. It also issues a status signal 𝐼𝑂/𝑀 to distinguish whether read/write operation is to be

performed by memory or I/O device. Memory and I/O devices require control signals is modified

from shown below.

 𝑀𝐸𝑀𝑅 memory read

 𝑀𝐸𝑀𝑊 memory write

𝐼𝑂𝑅 I/O read

𝐼𝑂𝑊 I/O write

These control signals are generated using 𝑅𝐷 , 𝑊𝑅 and 𝐼𝑂/𝑀 using logic gates. OR logic and

inverters are used for the purpose as shown in figure.

 Figure 3.8 : control signals for memory I/O Read/Write operation.

To get 𝑴𝑬𝑴𝑹 , use 𝑰𝑶/𝑴 V 𝑹𝑫

 Here V is a symbol for logical OR operations. Memory read operation takes place when 𝐼𝑂/𝑀

and 𝑅𝐷 both are low. 𝐼𝑂/𝑀 and 𝑅𝐷 are applied to an OR gate. The output of the OR gate is

60

𝑀𝐸𝑀𝑅 when both . 𝐼𝑂/𝑀 and 𝑅𝐷 are low. 𝑀𝐸𝑀𝑅 goes low and it activates memory for read

operation. Similarly, other control signals are obtained as shown below:

To get 𝑴𝑬𝑴𝑾 , use 𝐼𝑂/𝑀 V 𝑊𝑅 I/O read operation takes place when 𝐼𝑂/𝑀 is high. To get

IOR and 𝐼𝑂𝑊 signals 𝐼𝑂/𝑀 is inverted and then applied to OR gates.

 Get 𝐼𝑂𝑅 using inverted 𝐼𝑂/𝑀 V 𝑅𝐷

 Get 𝐼𝑂𝑊 using inverted 𝐼𝑂/𝑀 V 𝑊𝑅

3.11 I/O ports:

 An input device is connected to the µp through an input port. An input port is a place for

unloading data. An input device unloads data into port. The µp reads data from the input port.

Thus datas are transferred from the input device to the accumulator is a input port. Similarly an

output device is connected to the µp through an output port. The µp unloads data into an output

port. As the output port is connected to the output device. Data are transferred to the output

device. Figure shows a schematic connection of the CPU I/O ports and I/O devices.

 Figure 3.9 : Interfacing of I/O device through I/O port

An I/O port may be programmable or non-programmable. A non-programmable port behaves as

an input port of it has been designed and connected in input mode. Similarly a port connected in

an output acts as an output port. But a programmable I/O port can be programmed to act either as

an input port or output port, the electrical connections remain some.

 The Intel 8212 is an 8- bit non-programmable I/O port. It can be connected to the µp either as

an input port or an output port. If we require one input port and one output port, two units of

8212 will be required care of them will be connecting input mode and the others in the output

mode. Figure 3.10 shows the connections of 8212 in input mode and output mode. The SCL

6532 is a RAM, I/O , Internal times device(RIOT) manufactured by semiconductors complex

ltd(India). It has a 8- bit, bidirectional data bus; 128 x 8 state RAM, two 8- bit bidirectional data

ports; programmable internal times with interrupt capability 6502/6800 bus compabability. It

operates with 1 MHz and 2 MHz clock and a single supply +5v. It is implemented in a 40-pin

IC.

61

 The Intel 8155 is a RAM with I/O ports. It contains a 256 byte RAM, 3 I/O ports and a 14-bit

timer/counter. There are 3 ports: A, B and C. The port A and port B are 8 bit and port c of 6 bits.

Each port can be programmed either as an input port or output port. The port c may also be

programmed as a control port for the port A and port B.

 (a) Input mode (b) output mode

 Fig.3.10

3.12 Programmable Peripheral Interface (PPI):

 A programmable peripheral interface is a multiport device. The ports may be

programmed in a variety of ways as required by the programmer. The device is very useful for

interfacing peripheral device. The term PIA, Peripheral Interface Adapter is also used by some

manufacturer, Indian kits generally use Intel 8255 which is a programmable peripheral interface

(PPI).

Intel 8255:

 The Intel 8255 is a programmable peripheral interface (PPI). It has two versions namely,

the Intel 8255A and the Intel 8255A-5 . General discriptions for both are same. There are same

differences in their electrical characteristics. It‟s main functions are to interface peripheral device

to the µp. It has 3, 8-bit ports, namely port A, port B and port C. The port C has been further

divided into two 4-bits ports port C upper and port C lower. Thus a total of 4 ports. Each port can

be programmed either as an input port or as an output port.

Architecture of Intel 8255A:

 Figure 3.11 shows the pin diagram of Intel 8255A. It is a 40 pin I.C package. It operates

on a single 5Vd.c supply. Its important characteristics are as follows

Ambient temperature 0 to 70
0
c.

Voltage on any pin 0.5v to 7v.

62

 Power dissipation 1 watt.

 VIL= Input low voltage =minimum 0.5V, maximum 0.8V.

 VIH= Input high voltage= minimum 2V, maximum VCC.

 VOL=output low voltage=0.45 V

 VOH= output high voltage=2.4V

 IDR= Darkington drive current minimum 1 mA, maximum 4 mA on any 8 pins of port.

The pins for various ports are as follows:

𝑃𝐴0 − 𝑃𝐴7 8 pins of port A

𝑃𝐵0 − 𝑃𝐵7 8 pins of port B

 𝑃𝐶0 − 𝑃𝐶3 4 pins of port C lower

 𝑃𝐶4 − 𝑃𝐶7 4 pins of port C upper

Fig.3.11 The pin diagram of Intel 8255A

The important control signals are as follows:

𝐶𝑆 (chip select):

 It is a chip select signal. The low status of this signal enables communication between the

CPU and 8255.

𝑅𝐷 (read):

 When 𝑅𝐷 goes low, the 8255 sends out data or status information to the CPU on the data

bus. In other words it allows the CPU to read data from the input port of 8255.

63

𝑊𝑅 (write):

 When 𝑊𝑅 goes low, the CPU writes data or control word into 8255. The CPU writes data

into the output port of 8255 and the control word into the control word register.

𝐴0 𝑎𝑛𝑑 𝐴1:

 The selection of input port and control word register is done using A0 and A1 in

conjunction with 𝑅𝐷 and 𝑊𝑅 . A0 and A1 are normally connected to the least signification bits of

the address bus. If two 8255 units are used the address of ports are as follows:

For the 1
st
 unit of 8255, ie, 8255.1:

Port / control word register Port / control word register address

Port A 00

Port B 01

Port c 02

Control word register 03

 For the 2
nd

 unit of 8255 ie, 8255.2:

Port / control word registers Port / control word register address

Port A 08

Port B 09

Port c 0A

Control word register 0B

If we write the instruction IN00, it means that it is for the port A of 82551. When this instruction

is executed data are transferred from the port A to the accumulator. The instruction OUT 03 will

transfer the content of the accumulator to the control word register of 82551. The instruction

OUT 03 will transfer the content of the accumulator. OUT 0A transfer the content of the

accumulator to the port C nof 8255.2 . The instruction OUT 0B transfers the content of the

accumulator to the control word register of 8255.2 .

Operating Modes Of 8255:

 The Intel 8255 has the following there modes of operation which are selected by

software.

Mode 0 – simple input/output

 Mode 1 – strobed input/output

Mode 2 – bidirectional port

64

 The 8255 has two 8 bit ports (port A and port B) and two 4-bit port(port Cupper and port Clower).

In mode C operation C port can be operated as a simple input or output port. Each of the form

ports of 8255 can be programmed to be either an input or output port. Mode 1 is strobed

input/output mode of operation. The Port A and Port B both are designed to operate in this mode

of operation. When Port A and Port B are programmed in mode 1, six pins of part C are used for

their control. 𝑃𝐶𝑜 ,𝑃𝐶1 𝑎𝑛𝑑 𝑃𝐶2 are used for their control of the port B which can be used either

as input or output port. If the port A is operated as an input port, 𝑃𝐶3, 𝑃𝐶4 𝑎𝑛𝑑 𝑃𝐶5 are used for

this control. The remaining pairs of port c ie, 𝑃𝐶6 𝑎𝑛𝑑 𝑃𝐶7 can be used as either input or output.

When port A is operated as an output port, pins 𝑃𝐶3, 𝑃𝐶6 𝑎𝑛𝑑 𝑃𝐶7 are used for its control. The

pins 𝑃𝐶4 and 𝑃𝐶5 can be used either an input or output. The combination of mode 1 and mode 0

operation is also possible. For example, when port A is programmed to operate in mode 1, the

port B can be operated in mode 0. Mode 2 is strobed bidirectional mode operation. In this mode

port A can be programmed to operates as a bidirectional port. The mode 2 operation is only for

port A. when port A is programmed to mode 2, the port B can be used in either mode 1 or mode

0 for mode 2 operation 𝑃𝐶3 𝑡𝑜 𝑃𝐶7 are used for the control of port A.

Control Groups:

 A control word is formed which contains the information regarding the function and

mode of the ports.

Control word:

 According to the requirement, a port can be programmed to act either as an input port or

an output port. For programming the ports of 8255 a control word is formed. The bits of control

word are shown in the Fig.3.12.

Fig.3.12 Control word bits for Intel 8255

65

Control word is written into the control word registers which is within 8255. For control word

register which is with in 8255. For control word register only OUT instruction is used. It contains

cannot be read. The control word bit corresponding to a particular port is set to either 1 or 0

depending upon the definition of the port, whether it is to be made an input port or output port.

If a particular port is to be made an input port, the bit corresponding to that port is set to 1. For

making a port an output port, the corresponding bit for the port is set to 0. The detained

description of the bits of the control word is as follows:

Bit No 0:

 It is for port clower

To make port Clower an input port, the bit is set to 1.

To make port Clower an output port, the bit is set to 0.

Bit No 1:

 It is for port B

 To make port B and input port, the bit is set to 1.

 To make port b an output port, the bit is set to 0.

Bit No 2:

 It is for the selection of the mode for the port B. if the port B has to operate in mode 0,

the bit is set to 0. For mode 1 operation of the port B, it is set to 1.

Bit No 3:

 It is for the port Cupper

 To make port Cupper an input port, the bit set to 1.

 To make port Cupper an output port, the bit is set to 0.

Bit No 4:

 It is for the port A.

 To make portA, an input port, the bit set to .

 To make port A, an output port, the bit is set to 0.

Bit No 5 and 6: These bits are to define the operating mode of the port A. For the various modes

of port A these bits can defined as follows:

66

Mode of Port A Bit no 6 Bit no 5

Mode 0 0 0

Mode 1 0 1

Mode 2 1 0 or 1

For mode 2 bit no 5 is set either 0 or 1 it is inmaterial.

Bit No 7: It is set to 1 if ports A,B and C are defined as input/output ports. It is set to 0 if the

individual pins of the port C are to be set or reset.

Examples:

 The following examples will illustrate how to make control words.

Ex:1

 Make control word when the ports of Intel/8255 are defined as follows

Port A as an input port.

 Mode of the port A – mode 0

 Port B as an output port.

 Mode of the port B – mode 0.

 Mode of the port B – mode 0

Port Cupper as an input port

 Port Clower as an output port

Solution:

 The control word bits for the above definition of the ports are as follows:

67

 Bit No.0 is set to 0, as the port Clower is an output port.

 Bit No.1 is set to 0, as the port B is an output port.

 Bit No.2 is set to 0, as the port B has to operate in mode 0.

 Bit No.3 is set to 1, as the port Cupper is an input port.

 Bit No.4 is set to 1 , as the port a is an input port.

 Bit No5 and 6 are set to 00 as the port A has to operate in mode 0.

 Bit No 7 is set to 1, as the ports of A ,B and C are used as simple input/output port.

 Thus the control word= 98H.

3.13 Programmable DMA controller:

 The direct memory access (DMA) data transfer schemes, data are directly transferred

from I/O device to RAM or from RAM to I/O devices. The DMA data transfer , the data and

address buses come reads the control of the peripheral devices which wants DMA data transfer.

The µp has to relinquish to control of the address and data buses for DMA operation on the

request of I/O devices. For DMA data transfer the I/O device must have its own register. It most

also be able to generate control signals required for DMA data transfer. Generally such facilities

are not available with I/o devices. Single chip programmable DMA controllers have been

developed by several manufacturers for the interfacing of I/O devices to the µp for DMA data

transfer. Such controller provide all the facilities for DMA data transfer. Intel 8257 and 8237 are

the most examples of DMA controllers.

Intel 8257:

 It is a programmable DMA controller. Figure 3.13 shows its schematic diagram. It is a 4-

channel programmable direct memory access (DMA) controller. It is a 40-pin I.C. package and

requires a single +5v supply for its operation. Four I/o devices can be interfaced to the µp

through this device. It is capable of performing three operation namely read, write and verify.

During the read operation data are transferred form the memory to the directly transferred form

the memory to the I/O device. During the write operation data are transferred from the I/o device

to the memory on receiving a request from the I/O device, the 8257 generator a sequential

memory address which allows the I/O device, to read or write directly to or from the memory.

Each channel incorporates two 16- bit resisters namely,

1. DMA address register

 2. Byte count register

68

These register are initialized before a channel is enable. Initially the DMA address of the first

memory location to be accessed. During DMA operation it stores the next memory locations to

be accessed in the next DMA cycle. 14-LSBs of the byte count registers store the number of

bytes to be transferred. 2
14

(16384) bytes of data can directly be transferred to the memory from

the I/O device or from the memory to the I/O device. 2 MSBs of the byte count register indicate

the operation which will be performed by the controller on that channel. Besides these register

the 8257 also includes of mode set register and starter register.

Fig.3.13 Schematic diagram of Intel 8257

The important pins of Intel 8257 are as follows:

𝑫𝑹𝑸𝟎 − 𝑫𝑹𝑸𝟑: These are DMA request lines. An I/O device sends its DMA request on one of

these lines. A high status of the line generator a DMA request.

𝑫𝑨𝑪𝑲𝟎
 − 𝑫𝑨𝑪𝑲𝟑

 : These are the DMA acknowledge lines. The Intel 8257 sends an

acknowledge signal through one of these lines informing an I/O device that it has been selected

for DMA data transfer. A low on the line acknowledge the I/O devices.

𝑨𝟎 − 𝑨𝟕: These are address lines. 𝐴0 − 𝐴3 are bidirectional lines. In the master mode these lines

carry 4 LSB of 16- bit memory address generated by the 8257.ln the slave mode these lines are

69

input lines. The input select one of the register to be read or programmed. 𝐴4 − 𝐴7 lines give

tristated outputs which carry 4 through 7 of the 16- bit memory address generated by the 8257.

𝑫𝟎 − 𝑫𝟕: These are data lines. These are bi-directional three state lines. While programming the

controller the CPU sends data for the DMA address register, the byte count register, and mode

set register through these data lines. During DMA cycle, the 8257 sends the 8 MSBs are then

latched in 8212 latch. Therefore the data bus is made available to handle memory data transfer

during reset of the DMA cycle.

𝑨𝑬𝑵: Address enable

𝑨𝑫𝑺𝑻𝑩: A high on this line latches the 8 MSBs of the address which are sent on D-bus into

Intel 8212 connected for this purpose.

𝑪𝑺 : It is a chip select.

𝑰/𝑶𝑹 : I/O read. It is a bidirectional line. For output mode it is used to access data from the I/O

device during the DMA write cycle.

𝑰/𝑶𝑾 : I/O write. It is bidirectional line. In output mode it allows the transfer of data to the I/O

device during the DMA read cycle. Data is transferred from the memory.

𝑴𝑬𝑴𝑹 : Memory read.

𝑴𝑬𝑴𝑾 : Memory write.

𝑻𝑪: Byte count (terminal count)

𝑴𝑨𝑹𝑻𝑪: Modulo 128 mark

𝑪𝑳𝑲: Clock.

𝑯𝑹𝑸: Hold request

𝑯𝑳𝑫𝑨: Hold acknowledge.

 An I/O device sends its request for DMA transfer through one of the four DRQ lines. On

receiving the DMA request for DMA data transfer from an I/O device, the Intel 8257 sends the

hold request to the CPU through the HRQ lines. The 8257 receives the hold acknowledge signal

from the CPU through HLDA line. After receiving the HOLD acknowledge from CPU, it sends

DMA acknowledge to the I/O device through 𝐷𝐴𝐶𝐾 line. The memory address is sent out on

address and data lines. The 8257 sends 8 MSBs of the memory address over D-bus. These

8MSBs of the memory address are latched into 8212 using ADSTB signal. ADSTB is similar to

ALE of Intel 8085. For DMA send cycle, in which data are transferred from memory to I/O

devices. Two control signal 𝑀𝐸𝑀𝑅 and 𝐼/𝑂𝑊 are issued by 8257. The 𝑀𝐸𝑀𝑅 enables the

70

addressed memory for reading data from it. The 𝐼/𝑂𝑊 enables the I/O device to accept data.

similarly, for DMA write cycle in which data are transferred from the I/O device to the memory,

two control signals 𝑀𝐸𝑀𝑊 and 𝐼/𝑂𝑅 are issued by the controller. The 𝑀𝐸𝑀𝑊 enables the

addressed memory for writing data to it.

The 𝐼/𝑂𝑅 enables the I/O device to output data. The byte count is decremented by one

after the transfer of one byte of data, when byte count becomes zero, TC goes high indicating

that the data using DMA is complete in a fixed priority mode or rotating mode of operation.

READY line is used by slow memory or I/O devices.

3.14 Programmable Interrupt Controller(PIC):

 The programmable interrupt controllers is used when several I/O devices transfer data

using interrupt and they are to be connected to the same interrupt level of the µp. when the

number of the I/O devices is less than the number of interrupt levels of the µp, such controllers

are not required. The Intel 8259 is a single chip programmable interrupt controller. It is

compatible with 8086, 8088 and 8085 microprocessor. It is a 28 pin DIP IC package and uses N-

Mos technology. It requires a single +5V supply for its operation. Figure 3.14 shows the

schematic diagram of Intel 8259.

Fig.3.14 Schematic diagram of Intel 8259

The detail of its pins are as follows:

𝑪𝑺 : Chip select

𝑾𝑹 : Write A low on this pin enables Intel 8259 to accept command word CPU.

𝑹𝑫 : Read. A low on this pin enables Intel 8259 to send the various status signals on the data bus

 for CPU.

71

𝑷𝟎 − 𝑷𝟕: Bidirectional data bus control, status and interrupt vector information are transformed

 via this bus.

𝑪𝑨𝑺𝟎 − 𝑪𝑨𝑺𝟐: cascade lines.

𝑺𝑷 /𝑬𝑵 : Slave programmable/ enable buffer

𝑰𝑵𝑻: Interrupt . It is used to interrupt CPU.

𝑰𝑵𝑻𝑨 : Interrupt acknowledge.

𝑰𝑹𝟎 − 𝑰𝑹𝟕: Interrupt request. I/O devices send interrupt request these lines.

𝑨𝟎: Address line. It acts in configuration with 𝑅𝐷 ,𝑊𝑅 and 𝐶𝑆 . The Intel 8259 uses it to

interrupt command words the CPU writes and status the CPU wants to send.

The following Fig. 3.15 shows the block diagram of connections of PIC and I/O devices to the

micro computers.

Fig.3.15 Interfacing of 8259 and I/O devices

 The priority can be assigned to the I/O devices connected to PIC. 8 I/O devices can be

connected to 8259 through 𝐼𝑅0 − 𝐼𝑅7 lines. The interrupt controller functions as overall manages

is an interrupt driven system. It accepts request from an I/O device and determines which of the

incoming request is of the highest priority. After checking the priority of the interrupt request,

the 8259 sends an interrupt signal to the µp through the INT line. The µp sends the acknowledge

72

signal through 𝐼𝑁𝑇𝐴 line can receiving 𝐼𝑁𝑇𝐴 signal all the interrupt of lower priority are

inhibited and the 8259 sends a CALL instruction to the µp. the CALL instruction is unique so

that the µp can take up the ISS for the I/O device which has requested for data transfer. 8259

chips can be cascaded to receive upto 64 vectored priority interrupts without additional

circuitory.

3.16 Programmable Counter/ Timer- Intel 8253:

 When the processor has to perform time based activities, there are two methods to the

processor can execute a delay subroutine. In this method, the delay subroutine will load a count

value in one of the register of the processor and start‟s decrementing the count value. After every

decrement operation, the zero flag is checked to verify whether, the count has reached zero or

not. If the count has reached zero the delay subroutine is terminated. Now the desired time will

be elapsed and the processor and perform the desired time based task. In this method, the time is

estimated interms of processor clock periods to execute the delay subroutine.

 In second method an external times can maintain the timings and interrupt the processor

at periodic intervals. In the first method the processor time is wasted by simply decremented a

register. But in the second method, the processor time can be efficiently utilized, because the

processor can perform other tasks in between times interrupts.

 Popular programmable internal timer chips are Intel 8253 and 8254. The 8253 operator

in the frequency range of d.c to 10 MHz. The 8253 uses NMOS technology where as 8254

HMOS technology. Both are pin to pin compatible and operation in the following six modes.

 Mode 0: Interrupt on terminal count

 Mode 1: Programmable one shot

 Mode 2: Rate generator

 Mode 3: square wave mode

 Mode 4: software trigged mode

 Mode 5: Hardware trigged mode.

The 8254 is compatible to 8086, 8086, 8085 and most µps. The 8253 is compatible to 8085 µp.

the 8254 is a super set 8253.

Intel 8253:

 The 8253 is 24 pin IC and operation at 5V d.c. It contains three independent 16-bit

counters, which can be programmed to work is any one of the possible six modes. Each counter

has a clock input, gate output and counter output. To operate a counter, a count value has to be

73

loaded in count register, gate should be tied high and a clock signal should be applied through

clock input. The pin configuration of 8253 is shown in Fig.3.16. The functional block diagram

of 8253 is shown in Fig.3.17.

Fig.3.16 The pin configuration of 8253

3.17 The functional block diagram of 8253

74

 Pin Description

 D0- D7 Bi directional data bus.

𝐶𝑆 Chip select

𝑅𝐷 Read control

 𝑊𝑅 Write control

 𝐴0 , 𝐴1 Internal address

 Clk -0 to clk – 2 Clock input to counters

 Gate -0 to gate – 2 Gate controls input counters

 Out-0 to out -2 Output of counters

The 8253 has eight data lines which can be used for communication with processor. The control

words and count values are written in 8253 registers through data bus buffer. The 𝐶𝑆 is used to

select the chip. The address lines 𝐴0 𝑎𝑛𝑑 𝐴1 are used to select any one of the four internal

devices as shown in table 3.4:

 Table 3.4: Internal address of 8253

 Internal address Device selected

A0 A1

0 0 Counter 0

0 1 Counter 1

1 0 Counter 2

1 1 Control register

The control register 𝑅𝐷 and 𝑊𝑅 are used by the processor to perform read/ write operation.

Control word register:

 When the pins 𝐴0, 𝐴1 are 11, the control word register is selected. The control word

format is shown below:

The bits 𝐷7 𝑎𝑛𝑑 𝐷6 of the control word are to select one of the 3 counters. 𝐷5 𝑎𝑛𝑑 𝐷4 are for

loading/reading the count. 𝐷3, 𝐷2 𝑎𝑛𝑑 𝐷1 are for the selection of operating mode of the selected

counter. There are six modes of operation for each counter of 8253. The selected counters can be

programmed to operate in any desired mode. The six modes of operation are: mode 0, mode 1,

75

mode 2, mode 3, mode 4 and mode 5. The bit 𝐷0 for the selection a binary of BCD counting.

When 𝐷0 is set to 0 the selected counter operator as a binary counter. When it is set to 1 the

counter operator as a BCD counter.

The function of counter of 8253 are programmed by the system software. The control

word decides the selection of counters, its mode of operation, loading sequence of the count and

selection of binary or BCD counting. As soon as the control word is written into the control word

register the desired counter is selected, mode of operation is set and the loading sequence of the

count and the selection of binary or BCD counting are defined.

SC(Select counter): To select the counters 𝑆𝐶0 and SC/ are set as follows:

𝑆𝐶1 𝑆𝐶0

Select counter 0 0 0

0 1 Select counter 1

1 0 Select counter 2

1 1 Illegal

RL(Read/ load): To load read counts 𝑅𝐿0 𝑎𝑛𝑑 𝑅𝐿1 are set as follows:

𝑅𝐿1 𝑅𝐿0

Counter latching operation 0 0

0 1 Read/ Load Least

signification byte only

1 0 Read/ Load most

signification byte only

1 1 Read/ Load signification

byte first, then most

signification byte.

Mode: Mode selecting bits 𝑀0, 𝑀1 𝑎𝑛𝑑 𝑀2 are set as follows:

𝑀2 𝑀1 𝑀0

0 0 0 Mode 0

0 0 1 Mode 1

X 1 0 Mode 2

X 1 0 Mode 3

1 0 0 Mode 4

1 0 1 Mode 5

76

BCD:

0 Binary counter 16 bits.

1 Binary coded decimal (BCD) counter(4 decodes)

Reading while counting:

 There is a commend for latching the content of the counts to lead its count while count is

still going on. The bit pattern for the control word for latching operation as follows:

D7 D6 D5 D4 D3 D2 D1 D0

SC1 SC0 0 0 X X X x

SC1 and SC0 – specified counter to be latched.

D5 and D4 – 00 makes counter latching operation

X - indicates don‟t care.

A counter can be used for various applications such as BCD/Binary counter, programmable rate

generator, square wave generator, hardware/ software triggered strobe, programmable one shot,

to generate time delay etc.

1) Mode 0: Interrupt on terminal count:(to generate accurate time delay)

In this mode, the timer is loaded with a value, the counter decrements for each clock

pulse. When the counter reaches zero, an interrupt is generated.

 In this mode; initially the OUT is low, once a count is loaded in the register, the counter

is decremented every cycle, and when the count reaches zero, the OUT goes high. This is can be

used as an interrupt. The OUT remains high until a new count or command word is loaded.

Figure 3.18 shown the timing diagram for mode 0 operation.

Fig. 3.18

77

 Mode 1: programmable one shot: A pulse length and initial counter is set before the first

cycle, when the counter reaches zero, the output goes high and stays high until reset. This

process is repeated each time it is trigged by the trigger pulse. In this mode, the out is initially

high. When the Gate is triggered, the out goes low and at the end of the count, the out goes high

again, thus generating a one-shot pulse.

 The width of the output pulse can be varied by varying N. As the width of the output

pulse is programmable this mode of operation is known as programmable one shot.

Mode 2: Rate generator:

 In mode 2 the counter act as a simple divide by N counts. This mode is used to generate a

pulse equal to the clock period at a given internal. When a count is loaded, the OUT stays high

until the count reaches 1, and then the OUT goes low for one clock period A6 in this the output

becomes high again and the count N is automatically reloaded into the counters.

Mode 3: Square wave generator:

 Here, a square wave is generated by the timer in this mode. The counter output remains

high during the first half number of clock pulses and low during the other half number of clock

pulses. When the counter reaches zero, the process is repeated.

 In this mode, when a count is loaded, the OUT is high. The count is decremented by two

at every cycle, and when it reaches zero, the OUT goes low, and the count is reloaded again. This

is repeated continuously, thus a continuous square wave with period equal to the period of the

count is generated. In other words, the frequency of the square wave is equal to the frequency of

78

the clock is divided by the count. If the count (N) is odd, the pulse stays high for (N+1

)/2 clock cycles and stays low for (N-2)/2 clock cycles. If the count is even, the pulse stays high

for N/2 and stays low for N/2 clock cycles.

Mode 4: Software Triggered strobe:

 The timer is loaded with a value and the value is counted down to zero; one count per

clock pulse. When the counter reaches zero, a pulse is generated. A software commend trigger or

status the next cycle.

Mode 5: Hardware Triggered strobe:

 The timer is loaded with a value and the value is counted down to zero. One count per

clock pulse. When the counter reaches zero, a pulse is generated. A hardware command triggers

or starts the next cycle.

79

UNIT-IV

Programming of 8086

4.1 8086 CPU Architecture

The internal functions of the 8086 processor are partitioned logically into two processing units as

shown in Fig.4.1.

Fig.4.1 Architecture of 8086

80

8086 microprocessor has two units; Execution Unit (EU) and Bus Interface Unit (BIU). They are

dependent and get worked by each other. Below is a short description of these two units.

Execution Unit (EU):

 The EU contains (i) ALU (ii) General purpose registers (iii) Index registers (iv)

pointers .

 Execution unit receives program instruction codes and data from the BIU, executes them and

stores the results in the general registers. It can also store the data in a memory location or send

them to an I/O device by passing the data back to the BIU. This unit, EU, has no connection with

the system Buses. It receives and outputs all its data through BIU.

ALU (Arithmetic and Logic Unit) : The EU unit contains a circuit board called the Arithmetic

and Logic Unit. This unit can perform various arithmetic and logical operation, if required, based

on the instruction to be executed. It can perform arithmetical operations, such as add, subtract,

increment, decrement, convert byte/word and compare etc and logical operations, such as AND,

OR, exclusive OR, shift/rotate and test etc.

Registers : A register is like a memory location where the exception is that these are denoted by

name rather than numbers. It has 4 data registers, AX, BX, CX, DX and 2 pointer registers SP,

BP and 2 index registers SI, DI and 1 temporary register and 1 status register FLAGS .

AX, BX, CX and DX registers has 2 8-bit registers to access the high and low byte data registers.

The high byte of AX is called AH and the low byte is AL. Similarly, the high and low bytes of

BX, CX, DX are BH and BL, CH and Cl, DH and DL respectively. All the data, pointer, index

and status registers are of 16 bits. Else these, the temporary register holds the operands for the

ALU and the individual bits of the FLAGS register reflect the result of a computation.

Bus Interface Unit:

The BIU contains (i) Segment registers (ii) Instruction registers (iii) Instruction queue and

(v) Flag register

As the EU has no connection with the system Busses, this job is done by BIU. BIU and EU are

connected with an internal bus. BIU connects EU with the memory or I/O circuits. It is

responsible for transmitting data, addresses and control signal on the busses.

Registers : BIU has 4 segment busses, CS, DS, SS, ES. These all 4 segment registers holds the

addresses of instructions and data in memory. These values are used by the processor to access

memory locations. It also contain 1 pointer register IP. IP contains the address of the next

instruction to executed by the EU.

Instruction Queue : BIU also contain an instruction queue. When the EU executes instructions,

the BIU gets up to 6 bytes of the next instruction and stores them in the instruction queue and

this process is called instruction prefetch. This is a process to speed up the processor. Also when

81

the EU needs to be connected with memory or peripherals, BIU suspends instruction prefetch

and performs the needed operations

Purpose of using Instruction Queue:

BIU contains an instruction queue. When the EU executes instructions, the BIU gets up to 6

bytes of the next instruction and stores them in the instruction queue and this process is called

instruction prefetch. This is a process to speed up the processor. A subtle advantage of

instruction queue is that, as next several instructions are usually in the queue, the BIU can access

memory at a somewhat "leisurely" pace. This means that slow-memory parts can be used without

affecting overall system performance.

5.2 Instruction Set of Intel 8086 Microprocessor

 Instruction set of 8086 microprocessor can be divided into data copy/transfer instructions,

arithmetic and logical instructions, branch/loop instructions, machine control instructions, flag

manipulation instructions, string manipulation instructions. Instruction set refers to the

instructions which can be used to program a microprocessor etc,. Instruction set can be divided

into data copy/transfer instructions, arithmetic and logical instructions, branch/loop instructions,

machine control instructions, flag manipulation instructions, string manipulation instructions.

The instruction set of 8086 microprocessor is:

(i) Data Copy/Transfer Instructions

 These are the type of instructions used to copy, move etc., data from source to destination.

Some of the data copy/transfer instructions are:

 MOV : Move data from register to register, memory to register, register to memory,

 memory to accumulator, accumulator to memory etc,.

 PUSH : Push data into register, memory etc,.

 POP : Pop data from register, memory etc,.

 XCHG : Exchange data between register, memory etc,.

 IN : Input from fixed port or variable port

 OUT : Output to fixed port or variable port

 LDS : Load pointer to DS

 LES : Load pointer to ES

 LAHF : Load AH with flags

 SAHF : Store AH into flags

 PUSHF : Push flags

 POPF : Pop flags

(ii) Arithmetic and Logical Instructions

 These are the type of instructions used to perform arithmetic operations like addition,

subtraction etc., and logical operations like and, or etc,. Some of the arithmetic and logical

instructions are :

82

 (a) Arithmetic Instructions

 ADD : Addition

 ADC : Addition with Carry

 INC : Increment by 1

 AAA : ASCII Adjust for Addition

 DAA : Decimal Adjust for Addition

 SUB : Subtraction

 SBB : Subtraction with Borrow

 DEC : Decrement by 1

 AAS : ASCII Adjust for Subtraction

 DAS : Decimal Adjust for Subtraction

 MUL : Unsigned Multiplication

 IMUL : Signed Multiplication

 AAM : ASCII Adjust for Multiplication

 DIV : Unsigned Division

 IDIV : Signed Division

 AAD : ASCII Adjust for Division

 NEG : Change Sign

 CMP : Compare

 CBW : Convert Byte to Word

 CWD : Convert Word to Double Word

 (b) Logical Instructions

 AND : Logical AND

 OR : Logical OR

 NOT : Logical NOT

 XOR : Logical XOR

 SHL : Shift Logical Left

 SHR : Shift Logical Right

 ROL : Rotate Left

 ROR : Rotate Right

 RCL : Rotate Left through Carry Flag

 RCR : Rotate Right through Carry Flag

(iii) Branch/Loop Instructions

These are the type of instructions used to control the transfer to a specified address. Some of the

branch/loop instructions are:

(a) Unconditional Branch/Loop Instructions

 CALL : Call a subroutine Unconditionally

 RET : Return from a procedure

83

 INTN : Interrupt of Type N

 INTO : Interrupt on Over flow

 LOOP : Loop instructions Unconditionally

(b) Conditional Branch/Loop Instructions

 JZ : Jump if zero

 JE : Jump if equal

 JNZ : Jump if not zero

 JNE : Jump if not equal

 JL : Jump if lesser

 JLE : Jump if lesser or equal

 JG : Jump if greater

 JGE : Jump if greater or equal

 JO : Jump on Over flow

 JNO : Jump on not Over flow

 JS : Jump on Sign

 JNS : Jump on not Sign

 LOOPZ : Loop if zero

 LOOPE : Loop if equal

 LOOPNZ : Loop if not zero

 LOOPNE : Loop if not equal

(iv) Machine Control Instructions

 These are type of instructions used to control machine status. Some of the machine control

instructions are:

 WAIT : Wait for the test input to go low

 HLT : Halt the processor

 NOP : No operation

 ESC : Escape to external device

 LOCK : Lock instruction prefix

(v) Flag manipulation Instructions

These are the type of instructions used to manipulate different flags present in the flag register of

8086 microprocessor. Some of the flag manipulation instructions are:

 CLC : Clear Carry Flag

 STC : Set Carry Flag

 CLD : Clear Direction Flag

 STD : Set Direction Flag

84

 CLI : Clear Interrupt Flag

 STI : Set Interrupt Flag

(vi) String Manipulation Instructions

These are the type of instructions used to manipulate strings. Some of the string manipulation

operations are:

 REP : Repeat Instruction Prefix

 REPE : Repeat if equal

 REPZ : Repeat if zero

 REPNE : Repeat if not equal

 REPNZ : Repeat if not zero

 MOVS : Move String Byte/Word

 CMPS : Compare String Byte/Word

 SCAS : Scan String Byte/Word

 LODS : Load String Byte/Word

 STOS : Store String Byte/Word

5.3 Addressing Modes of 8086

 8086 memory addressing modes provide flexible access to memory, allowing you to easily

access variables, arrays, records, pointers, and other complex data types. 12 addressing modes

classified in 5 groups

(1) Addressing modes for register and immediate data

(i). Register addressing: - the instruction will specify the name of the register which holds the

 data to be operated by the instruction

 Ex: MOV CL, DH : content of 8-bit DH register is moved to another 8-bit register CL

(ii). Immediate addressing: - an 8-bit or 16-bit data is specified as a part of the instruction

 Ex: MOV DL, 08H : The 8-bit data (08H) given in the instruction is moved to DL

 register

(2) Addressing modes for memory data

 (iii). Direct addressing: - an unsigned 16-bit displacement or signed 8-bit displacement will be

 specified in the instruction

 Ex: MOV DX, [08H] EA=0008H (sign extended 8-bit displacement)

 BA= (DS)*16; MA=BA+EA

 (DX)<= (MA) OR DL<= (MA)

 DH<= (MA+1)

85

(iv). Register indirect addressing: - the name of the register which holds the effective address

 will be specified in the instruction

 -Ex: MOV CX, [BX]

(v). Based addressing: - BX or BP register is used to hold a base value for effective address and

 a signed 8-bit or unsigned 16-bit displacement will be specified in the

 instruction

 -Ex: MOV AX, [BX+08H]

(vi). Indexed addressing: -SI or DI reg. is used to hold an index value for memory data and a

 signed 8-bit displacement or unsigned 16-bit displacement will be

 specified in the instruction.

 -Ex: MOV CX,[SI+0A2H]

(vii). Based index addressing: - the EA is given by the sum of base value and 8-bit or 16-bit

 displacement specified in the instruction

 -Ex: MOV DX,[BX+SI+0AH]

(viii). String addressing: - for string instructions - EA of source data is stored in SI reg. and the

 EA of destination data is stored in DI reg.

(3) Addressing modes for I/O ports

(ix). Direct I/O port addressing: - used to access data from standard I/O mapped devices or ports.

 -Ex: IN AL, [09H]: the content of port with address 09H is moved to AL

(x). Indirect I/O port addressing: - is used to access data from standard I/O mapped devices or

 ports and the instruction will specify the name of the register

 which holds the port address.

 -Ex: OUT [DX], AX : the content of AX is moved to port whose address is

 specified by DX

(4) Relative addressing modes

(xi). Relative addressing: - EA of the pgm instruction is specified relative to IP by an 8-bit

 displacement

 -Ex: JZ 0AH

(5) Implied addressing modes

86

(xii). Implied addressing: - in this the instruction itself will specify the data to be operated by the

 instruction

 -Ex: CLC: clear carry

8086 Assembly Language Programs :

 1. Addition of two 16-bit data:

 Label Mnemonics comments

 MOV AX, DATA 1 Load the first data in AX register

 MOV CL, 00H Clear the CL register for carry

 ADD AX, DATA 2 Add 2nd data to AX, sum will be in AX

 MOV 2000H, AX Store sum in memory location 1

 JNC STEP Check the status of carry flag

 INC CL If carry is set: increment CL by one

 STEP MOV 2002H CL Store carry in memory location 2

 HLT Halt

2. Subtraction of Two 16-bit data

 Label Mnemonics comments

 MOV SI, 2000H Load the address of data in SI register

 MOV AX, [SI] Get the minuend in AX register

 MOV BX, [SI+2] Get the subtrahend in BX register

 MOV CL, 00H Clear the CL register to account for sign

 SUB AX, BX Get the difference in AX register

 JNC STEP Check the status of carry flag

 INC CL If carry is set: increment CL by one

 NOT AX Then take 2’s compliment of difference

 ADD AX, 0001H

 STEP MOV [SI+4], AX Store the difference in memory location 1

 MOV [SI+6], CL Store sign bit in memory location 2

87

 HLT Halt

3. Multiplication of Two 16-bit data

 Label Mnemonics comments

 MOV AX, [2000] Move the first data to AX register from memory

 MUL [2002] Multiply the data in AX with the data in memory

 location 2002 H

 MOV [2100], DX Save the MSW (higher order) of the result in DX

 Register

 MOV [2102], AX Save the LSW (ligher order) of the result in AX

 register

 HLT Halt

 4. Division of Two 32-bit data by 16-bit data

 Label Mnemonics comments

 MOV DX, [2000] Move the high order word dividend to DX register

 MOV AX, [2002 Move the lower order word dividend to AX register

 DIV [2004] Divide the data in DX: AX by the divisor

 MOV [2100], AX The quotient is stored in AX

 MOV [2102], DX The remainder is stored in DX

 HLT Halt

5. Find the sum of the elements in an array

 Label Mnemonics comments

 MOV SI, 2000H Set SI register as pointer for array

 MOV DI, 3000H Set DI register as pointer for result

 MOV CL, [SI] Set CL as count for number of bytes in array

 INC SI Set Si to point to I- st byte of array

 MOV AX, 0000H Set initial sum as zero

 STEP 1: DD AL, [SI] Add a byte of array to sum

88

 JNC STEP2 Check for carry flag

 INC AH If carry flag is set then increment AH

 STEP 2: INC SI Increment array pointer

 LOOP STEP 1 Repeat addition until count is zero

 MOV [DI], AX Store the sum in memory

 HLT Halt

 6. Find the largest data of signed numbers

 Label Mnemonics comments

 MOV AX, @data Initialize DS register

 MOV DS, AX

 MOV SI 2000H Initialize SI register

 MOV BX, 0000H Initialize maximum number

 MOV CX, 05H 5 numbers to be processed

 STEP 2: MOV AX, [SI] Load number from sequence

 CMP BX, AX Compare with current maximum number

 JCE STEP1

 MOV BX, AX Save new maximum number

 MOV DX, SI Save location of maximum number

 STEP 2: INC SI Update pointer

 LOOP STEP 2: Repeat until CX > 0

 MOV AX, 5C00H

 HLT Halt

7. Sorting of Data in ascending order

 Label Mnemonics comments

 MOV AX, @data Initialize DS register

 MOV DS, AX

 MOV CX,Bytes Number of bytes used by elements

89

 STEP 1 MOV DX, CX Copy in DX register

 DEC DX Number of comparisons

 ADD SI, DX Point to the last element

 MOV AX, Array [SI] Move the number to AX register

 STEP 2: CMP Array [SI-2], AX Compare it with previous number

 JBE STEP 3 If previous number < AX, then go to step 3

 MOV DL, Array {SI-2} Exchange the elements

 MOV Array [SI], DL Point to previous element

 DEC SI

 DEC DX Decrement counter

 JNZ STEP 2 If DX ≠ 0 then repeat

 STEP 3: MOV Array [SI], AX Exchange

 INC CX CX = CX +1

 CMP CX, Bytes Compare CX with number of bytes

 JBE STEP 1 If CX < number of bytes, goto step 1

 MOV AX, 5C00H

 HLT Halt

8. Finding Factorial of 8-bit dat

 Label Mnemonics comments

 MOV AX, @data Initialize DS register

 MOV DS, AX

 MOV AL, Num Number to AL

 STEP 1 MOV CL, AL Copy in DX register

 DEC DX Keep a copy in CL

 MOV AH, 00 Clear upper 8 bits of accumulator

 CMP AL, 1 If number = 1 then factorial = 1

 JC LOOP 1

 MOV BL, 2 b = 2

 MOV AL, 1 a = 1

 LOOP 2: MUL BL a = a x b

90

 INC BL b = b +1

 CMP BL, CL Is BL < = CL

 JNA LOOP2 If yes, then do another pass

 LOOP 1: MOV Fact , AX Fact = AX

 MOV AX, 5C00H

 HLT Halt

9. Converting BCD data to Binary data

 Label Mnemonics comments

 MOV BX, 2000H Load the address of the datain BX register

 MOV AL, [BX] Get the BCD data in AL register

 MOV AL, DL Copy the data in DL register

 AND DL, OFH Mask upper nibble (10s digit)

 AND AL, FOH Mask lower nibble (1s digit)

 MOV CL, 4 Move a count value 04 to CL

 ROR AL, CL Rotate the upper nibble to lower nibble position

 MOV DH, 0AH Set mutltiplier as OAH

 MUL DX Multiply 10s digit by OAH , the product will be in

 AL

 ADD AL, DL Get sum of 1s digit and product in AL

 MOV [BX+1], AL Save binary data in memory

 HLT Halt

10. Generation of Fibonacci series

 Label Mnemonics comments

 MOV SI, 2000H Initialize SI register

 MOV CX, OAX Number of elements to be generated in CX reg.

 XOR AL, AL Clear the accumulator

 MOV [SI], AL Move the first number 0 to AL

 ADD AL, 01H Add next number

91

 INC SI Increment pointer

 MOV [SI], AL Store the next Fibonacci number in memory

 pointed by SI

 AGAIN: ADD AL, [SI] Add the contents of accumulator to [SI]

 INC SI Increment pointer

 MOV [SI], AL To store next Fibonacci number

 DEC SI Decrement pointer to get the previous number

 into AL

 MOV AL, [SI]

 INC SI Increment pointer

 LOOP AGAIN If CX = 0 then repeat the loop

 MOV AX, 5C00H

 HLT Halt

92

Unit –V

Microprocessor System Design and Applications

5.1 Delays:

 Delay routines are subroutines used for maintaining the timings of various operations in

µp. In control applications, certain equipment need to be ON/OFF after a specified time delay. In

some applications, a certain operation has to be repeated after a specified time interval. In such

cases simple time delay routines can be used to maintain the timings of the operations. A delay

routine is generally written as a subroutine (It need not be a subroutine always. It can be even a

part of main program). In delay routine a count (number) is loaded in a register of µp. Then it is

decremented by one and the zero flags is checked to verify whether the content of register is zero

or not. When it is zero the time delay is over and the controls transferred to main program to

carry out the desired operation.

 The delay time is given by the total time taken to execute the delay routine. It can computed

by multiplying the total number of T required to execute subroutine and the time for T-state of

the processor. The total number of time can be computed from the knowledge of T states each

instruction. The time for one T state processor is given by the inverse of the internal clock

frequency of the processor. For example, of the 8085 µp has 5 MHz quartz crystal then,

 The internal clock frequency =
5

2
 = 2.5 MHz

 Time for one T-state =
1

2.5×106 = 0.4 µ sec.

5.1.1 Time delay using one register:

 The flow chart in Fig. 5.1 shows a time delay loop. A count is loaded in a register, and

the loop is executed until the count reaches zero. The set of instructions necessary to set up the

loop is also given Fig 5.1

.

93

Program:

Memory

address

Opcode Labels Mnemonics Operands Comment

FC 00 06 MVI B,10H Get 10 in

register B

FC 01 10

FC 02 05 Loop DCR B Decrement

register B

FC 03 C2 JNZ Loop Has the

content of B

become zero?

No jump to

loop, yes

produced

ahead

FC 04 02

FC 05 FC

FC 06 C9 RET

Fig.5.1

To generate very small delay only one register can be used. In the above program register B has

been loaded by 10H(16 decimal). Then the register B is decremented and program moves in a

loop till the content of register B becomes zero. After this program returns to the main program.

Delay time calculations:

 To calculate delay time it is examined that how many times each instruction of the above

program is executed. Number of states required for the execution of each instruction are:

Instructions States

MVI B,10 7

DCR B 4

JNZ 7/10

RET 10

The instruction JNZ takes 10 states when the content of register B is not zero and the program

jumps to the label loop. JNZ takes only 7 takes when the content of register B has become zero

and the program proceeds further to execute RET instruction. The Instructions MVI B,10 H and

RET are executed only once. The instruction DCR B is executed 16 times. The instruction JNZ is

94

executed 16 times out of which 15 times the program jumps to the label loop as the content of

register B has not become zero , and takes 10 states each time. At last when the content of

register B becomes zero, JNZ is executed and the program proceeds further. The last execution

of instruction JNZ takes only 7 states. The number of states required for the execution of each

instruction and now many times each instruction has been executed are as follows:

Instruction How many times the

instruction is executed

States

MVI B, 10 H 1 7 x 1

DCR B 16 4 x 16

JNZ 16 10 x 15+ 7 x 1

RET 1 10 x 1

Total states = 7 × 1 + 4 × 16 + 10 × 15 + 7 × 1 + 10 × 1

 = 7 + 64 + 150 + 7 + 10 = 238

Time for one T state for Intel 8085 is 320 ns.

Delay time = 238 × 320 × 10−9 𝑠𝑒𝑐

 = 0.238 × 0.320 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠

 = 0.07616 𝑚 𝑠𝑒𝑐.

To generate maximum delay register B is loaded by FF(255 decimal). The maximum delay using

one register is,

= 7 × 1 + 4 × 255 + 10 × 254 + 7 × 1 + 10 × 1.

= 7 + 1020 + 2540 + 7 + 10.

= 3584 × 320 × 10−9 𝑠𝑒𝑐.

= 1.11688 𝑚𝑖𝑙𝑙𝑖 𝑠𝑒𝑐.

5.1.2 Time delay using a register pair:

 The time delay can be considerably increased by setting a loop and using a register pair

with a 16 bit number (maximum FFFF H). The 16- bit number is decrement by using the

instruction DCX. However the instruction DCX does not set the zero flag and without the test

flags, Jump instructions cannot check desired data conditions. Additional techniques, therefore

must be used to set the zero flag.

The following set of instructions uses a register pair to set up a time delay.

95

Label Mnemonics Operands Comments T states

 LXI D, FFFF Get FFFF in

register pair DE

10

Loop DCX D Decrement count 6

 MOV A,D Move content of

register D to

accumulator

4

 ORA E Check if D and E

are zero

4

 JNZ Loop If D-E is not

zero, jump to

loop

10/7

 RET Return to main

program

10

If the count in register pair D-E is N, the total number of states are:

States = 10 + 𝑁 6 + 4 + 4 + 𝑁 − 1 × 10 + 1 × 7 + 10

 = 24𝑁 + 17.

Delay = 24𝑁 + 17 × time for one state

Maximum delay will be occur when count N=FFFF

 = 65,535 decimal

Maximum delay = 24 × 65,535 + 17 × 320 × 10−9𝑠𝑒𝑐

= 20.97664 milliseconds

5.1.3 Delay subroutines using TWO register: (time delay using a loop with in a loop

technique):

 A time delay similar to that of a register pair can also be achieved by using two loops, one

loop inside the other loop, as shown in Fig5.2(a). For example, register C is used in the inner

loop (Loop 1) and register B is used for the outer (Loop 2). The following instructions can be

used to implement the flow chart shown in Fig 5.2(a).

 MVI B,10H Get desired number in register

B

Loop 1 MVI C, 78H Get desired number in register

C

Loop 2 DCR C Decrement C

JNZ Loop 2 Is [c] zero? No , go to loop 2.

yes, produced further.

96

DCR B Decrement register B

JNZ Loop1 Is [B] is zero? No, go to loop

1. Yes ,produced further.

RET Return to main program

Delay calculations:

 States for instructions used are:

Instructions States

MVI 7

DCR 4

JNZ 7/10

RET 10

The states for the execution of each instruction of the program are as follows:

Instructions How many times executed States

 MVI B, 10H 1 7x1

Loop 1 MVI C, 78H 16 7x 16

Loop2 DCR C 120x 16 4x 120 x 16

JNZ Loop 2 120 x 16 10x[(120-1)x16]+7x16

DCR B 16 4x 16

JNZ Loop 1 16 10x(16-1)+7x1

RET 1 1x10

Total states: = 7 × 1 + 7 × 16 + 4 × 120 × 16 + 10 × 120 − 1 + 7 × 16 + 4 × 16 + 10 ×

 16 − 1 + 7 × 1 + 1 × 10

= 27182 states.

Delay time = 27182 × 320 × 10−9 second= 8.6912 milliseconds.

 To get maximum delay using two registers both register B and C are loaded by FF. The

total number of states for the maximum delay is,

= 7 × 1 + 7 × 255 + 4 × 255 × 255 + 10 255 − 1 × 255 + 7 × 255 + 4 × 255 + 10 ×

 255 − 1 + 7 × 1 + 10 × 1.

= 7 + 1785 + 260100 + 647700 + 1785 + 1020 + 2540 + 7 + 1.

= 914954 states

Delay time = 914954 × 320 × 10−9 seconds

97

≈ 0.293 seconds.

 Thus we see that delay obtained is very small. For some purpose this time is sufficient. If more

delay is required 3 or more registers can be used.

 (a) (b)

Fig.5.2

Similarly , the time delay with in a loop can be increased by using instructions such that will not

affect the program except to increase the time delay. For example, the instruction NOP (no

operation) can add four T states in the delay loop. The desired time delay can obtained by using

any or all available registers.

5.1.4 Delay subroutine using 3 register:

 The delay program using 3 registers is given below. To see the indication after certain

delay one LED display can be incorporated. The interfacing circuit of a simple LED is shown in

Fig.5.3. The LED display is connected to the pin PB0 of the port B through the buffer. A 560

ohm register is used in series with the LED to limit the circuit drawn by it. A pull up register of

about 1 k is used to boost the output voltage of the buffer. The control wordis 98 H, which makes

port B as output port.

98

 Fig 5.3: Interfacing of LED display

Program:

Memory

address

Machine

codes

Labels Mnemonics Operands Commends

2400 3E MVI A, 98 H Get controlled

word.

2401 98

2402 D3 Out 03 Initialize port

for LED

display

2403 03

2404 06 MVI B, 50 H

2405 50

2406 0E Loop 1 MVI 0, FF

2407 FF

2408 16 Loop 2 MVI D,FF

2409 FF

240A 15 Loop 3 DCR D

240B C2 JNZ Loop 3

240C OA Delay

subroutine

with 3

register

240D 24

240E OD DCR C

240F C2 JNZ Loop 2

2410 08

2411 24

2412 05 DCR B

2413 C2 JNZ Loop 1

2414 06

99

2415 24

2416 3E MVI A, 01

2417 01

2418 D3 Out 01 Output for

LED.

2419 01

241A 76 HLT

The numbers 50 in register B, FF in C and FF in D are moved to get the desired delay. The delay

time with to get the desired delay. The delay time with these numbers is a about 25 sec. This

time has been noted by stop watch in the laboratory. The maximum delay with 3 registers can be

obtained when all registers are loaded with FF. The maximum delay is about 74 sec.

Example 1:

 Write a delay routine to produce a time delay of 0.5 m sec in 8085 µp based system

whose clock source is 6 MHz quartz crystal.

Solution:

 The delay required in 0.5 m sec, hence an 8- bit register of 8085 can be used to store a

count value and then decrement to zero. The delay routine is written as a subroutine as shown

below:

Loop

MVI D,N Load the count value, N in D register.

DCR D Decrement the count

JNZ Loop If the count is not zero go to the loop

RET Return to main program

The following table shown the T-state required for execution of the instruction in the subroutine.

Instruction How many times the

instruction is executed

States

MVI D,N 1 7

DCR D N times 4 xN=4N

JNZ loop (N-1) times 10x(N-1) (or)7x1 =7

RET 1 10 x 1

Total T-state required for subroutine:

 = 7 + 4𝑁 + 10 𝑁 − 1 + 7 + 10.

100

 = 7 + 4𝑁 + 10𝑁 − 10 + 7 + 10.

 = 14𝑁 + 14.

Calculation to find the count value N

 External clock frequency =6MHz

 Internal clock frequency =
Externalclock

2
=

6

2
= 3𝑀𝐻𝑧

Time period of one T-state =
1

internal clock frequency

=
1

3 × 106
= 0.3333 𝜇 𝑠𝑒𝑐

≈ 330 𝑛 sec

Number of T-states required for 0.5 m sec

=
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦𝑠

𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑠𝑡𝑎𝑡𝑒𝑠.

=
0.5 × 10−3

0.3333 × 10−9

= 1500.15 = 150010

∴ Number of T- states required for 0.5 m sec =150010

 On equating the total T-states required for subroutine and number of T- states for the required

time delay the count value, N can be calculated.

∴ 14𝑁 + 14 = 150011

𝑁 =
1500 − 14

14

= 106.14 ≈ 10610 ≈ 6𝐴𝐻

∴ Count value N=6𝐴𝐻

 If the above delay routine is called by a program and executed with value of 6𝐴𝐻 then the delay

produced will be 0.5 m sec.

101

5.2 Generation of square waves or pulses using µp:

 A square wave or pulse can easily be generated by microprocessor. The µp sends high

and then low signals to generate square wave or pulse. A pulse or square wave can be generated

using I/O port or SOD line or timer/ counter (Intel 8253)

 To generate square wave connections are made in Fig. 5.4. The pin PBo of the port B of

8255-2 is used for taking output. This is connected to a buffer 7407. The final output is taken

from the buffer terminal. The control word used in the program is 98H to make port B an output

port.

 Fig 5.4: To generate square wave using µp

Program:

Address Machine

codes

Labels Mnemonics Operands Commands

2400 3E MVI A,98H Get control

word

2401 98

2402 D3 OUT OB Initialize

ports

2403 OB

2404 3E Loop MVI A,00

2405 00

2406 D3 OUT 09 Make PB0

low

2407 09

2408 CD CALL Delay 1

2409 00

240A 25

240B E MVI A, 01

240C 01

240D D3 OUT 09 Make PB0

102

High

240E 09

240F CD CALL DELAY 2

2410 09

2411 25

2412 C3 JMP Loop

Subroutines:

Delay 1:

2500 06 MVI B,02 Get count

for delay

2501 02

2502 05 G0 DCR B

2503 C3 JNZ G0

2504 02

2505 25

2506 C9 RET

Delay 2:

2509 OE MVI C,02 Get count

for delay

250A 02

250B 0D Back DCR C

250C C2 JNZ Back

250D 0B

250E 25

250F C9 RET

In this program Delay 1 controls the time period for which the square wave remains low, ie, zero.

Delay 2 controls the time for which the wave remains High ie, 1. If the time period for Low and

High are to be kept equal the counts in register B and register c are made equal. For such a case

there is no need of two subroutines only one delay subroutine will be called at two places ie, at

2408 and 240F memory addresses .There will be slight difference in timing of Low and High due

to the instruction JMP loop. If accuracy is desired this can be adjusted by suitable adjustment in

the cunts of register B and register C. The difference can also be minimized by inserting two

NOP instructions in Delay 1 subroutines. The instruction JMP Loop has been used at the end of

the program to repeat the whole process to generate equal wave.

103

5.2.1 To generate square wave or pulse using SOD line:

 A square wave can also be generated using SOD line of the µp. zero and one can be

outputted at SOD lines using SIM instruction. The execution of SIM instruction loads the content

of the 7
th

 bit of the accumulator into SOD latch. While executing SIM instruction the 6
th

 bit of

the accumulator is set to 1 to enable SOD lines. To generate square wave the connections are

made as shown in Fig 5.5. The SOD terminal is available on a µp kit.

 Fig 5.5: To generate square wave using SOD lines

Program:

Memory

address

Machine

codes

Labels Mnemonics Operands Comments

2400 3E Loop MVI A, 40H 6
th

 bit of

accumulator 1

and 7
th

 bit

zero.

2401 40

2402 30 SIM Make SOD

line low

2403 CD CALL DELAY 1

2404 00

2405 25

2406 3E MVI A,CO 6
th

bit of

accumulator 1

and 7
th

bit 1

2407 C0

2408 30 SIM Make SOD

line High

2409 CD Call Delay 2

240A 09

240B 25

240C C3 JMP Loop

240D 00

240E 24

104

 Delay 1 and Delay 2 are subroutines to control time periods for which SOD line remains

Low and High respectively. To output Low on the SOD line the 7
th

 bit of the accumulator is set

to zero. The 6
th

bit is set to 1 as it is for enabling the SOD line. Other bits of the accumulator are

for setting/resetting of Interrupts. For this case other bits are zero or one, it is immaterial. In the

above program they have been set to zero. The first instruction of the program MVI A, 40

indicates that the 7
th

bit is zero, 6
th

 bit is one and other bits are zero. The SIM instruction outputs

the 7
th

 bit of the accumulator on SOD line. CALL Delay 1 is for controlling the time period for

which the square wave remain low. The instruction MVI A, CO indicates that the 7
th

 bit of the

accumulator is one, 6
th

 bit one and other bits zero. Now the execution of SIM instruction outputs

High, ie, 1 on the SOD line. Call Delay 2controls the time period for which the square wave

remains High. The JMP loop instruction repeats the whole process to generate a square wave.

5.3 Sensors and Transducers:

5.3.1 Transducers or Transductors:

 A general term used for any device receiving input power from one system and supplying

output power corresponding to the input certain characteristics(e.g wave from) to another

system; which may electrical, mechanical ,or acoustic and thus including transformers,

amplifiers, filters, microphones , loud speakers etc.,

Transducers syn.sensors:

 Any device that converts a non-electrical parameters ,e.g. sound , pressure, or light, into

electrical signals or vice versa. The variations in the electrical signal parameters are functions of

the input parameter. Transducers are used in the electro acoustic field. Gramophone pickups,

microphones, and loud-speakers are all electro acoustic transducers. The term is also applied to

device in which both the input and output electrical signals. Such a device is known as an electric

transducers.

 For the measurement of physical quantities like temperature, pressure, speed, flow etc.,

transducers are used to current them to electrical quantities. The electrical output of the

transducers is proportional to the input quantity which may be temperature or speed or any other

physical quantity.

 A transducers used for strain measurement is called a strain Gauge. Strain gauges are

used to measure strains and stresses in structures and strain.

Sensors:

 A transducers or device whose input is a physical phenomenon and whose output is a

quantitative measure of that physical phenomenon.

105

5.4 Measurement of physical quantities:

 Microprocessor – based systems are widely used in industries for the measurement,

display and monitoring of physical quantities like temperature, pressure , speed , flow etc.,

Transducers are used to convert the physical quantities into electrical signal. If the electrical

signal is small it is amplified ,using amplifiers. The electrical signal is applied to an A/D

converter which is connected to a µc. It more than one physical quantities are to be monitored a

multiplexer is included in the interface. A schematic diagram for general interface is shown in

Fig.5.6

 Fig 5.6: Schematic diagram of Interface for physical quantity measurement

5.4.1 Temperature measurement and control:

 For the measurements of temperature one of the following devices are used.

 (i) Resistance thermometers (-100 to +300
0
c)

 (ii) Thermo couples (-250 to +200
0
c)

 (iii) Thermistor (-100 to +100
0
c)

 (iv) Pyrometers(+100 t0 +5000
0
c)

(i) Resistance thermometers:

 Platinum wires are frequently used in resistance thermometers for industrial applications

because of greater resolution, and mechanical and electrical stability as compared to copper or

nickel wires.

 A change in temperature causes a change in resistance. The resistance thermometer is

placed in an arm of a wheatstone bridge to get a voltage proportional to temperature.

106

(ii) Thermistor:

 A thermistor is a semiconductor device fabricated from a sintered mixture of metal alloys

having a large negative temperature co efficient. A thermistor is used in a wheatstone bridge to

get a voltage proportional to temperature. It can be used in the range of -100
0
c to +100

0
c for

greater accuracy as compared to platinum resistance thermometer.

(iii) Thermocouple:

 A two-terminal device based on the seeback effect, which is composed of two dissimilar

metals that produce a voltage across function that is linearly proportional to the temperature nof

the junction.

 A thermocouple is the most widely used transducer to measure temperature.

Thermocouple materials for the different range of temperatures are as follows:

Material Temp . range
0
c

Iron-constantan -200 to +1300

Chromel – alnmel -200 to +1200

Copper – constantan -200 to +400

Pt – Rh - Platinum 0 to 1500

Tungsten – rhenium O to 2000

5.4.2 Microprocessor – Based scheme:

 Fig 5.7(a) shows a microprocessor-based scheme for temperature measurement and

control. The output of a thermocouple proportional to the furnace or oven etc,. is in millivolt. It

is to be amplified using multistage amplifier before it is processed by microprocessor. The

amplified voltage is applied to an A/D converter. The µp sends a start of conversion signal to the

A/D converter through the port of 8255PPI. When A/D converter completes conversion, it

sends an end of conversional signal to microprocessor. Having received an end of conversion

signal from A/D converter the microprocessor reads the output of the A/D converter which is a

digital quantity proportional to the temperature to be measured. The µp displays the measured

temperature. If the temperature of a furnace, oven or water- bath is to be controlled, the µp first

measures its temperature and then compares the measured temperature with a reference

temperature at which the temperature is to be maintained. If the measured temperature is higher

than the reference temperature, µp sends control signal to reduce temperature .If the measured

temperature is less than the reference temperature, the µp sends a control signal to increase

temperature. The temperature of a furnace or oven can be increased or decreased by increasing or

decreasing the final input to the furnace. If heating is done by electric heaters, current in heating

element is controlled.

107

 Fig 5.7(a): µp based scheme for temperature measurement

Fig. 5. 7(b) shows an amplifier circuit to amplifier the output of the thermocouple, D.C. level

indicator is for initial adjustment.

 Fig 5.7(b): Three stage Amplifier and D.C. Level Detector

108

Program:

Machine

address

Machine

codes

Label Mnemonics Operands Comments

FC00 3E MVI A,98 Control word

for 8255

FC01 98

FC02 D3 OUT 0B Controlled

register

address

FC03 0B

FC04 3E Loop MVI A,00

FC05 00

FC06 D3 OUT 0A

FC07 OA

FC08 3E MVI A,08

FC09 08

FC0A D3 OUT 0A

FC0B 0A

FC0C DB READ IN 0A

FC0C 0A

FC0E 17 RAL Check end of

conversion

FCOF DA JC READ

FC11 OC

FC12 DB IN 08 Read output

of A/D

converter

FC13 08

FC14 32 STA FFF6 Store result

FC15 F6

FC16 FF

FC17 06 MVI B,00 Display result

FC18 00

FC19 CD CALL FA06

FC1A 06

FC1B FA

FC1C C3 JMP Loop

FC1D 04

FC1E FC

109

Result:

Temperature in
0
c Transducer voltage in

mV

Amplified voltage

volts

Digital voltage

45 0.3 0.66 2D

50 0.5 0.95 38

55 0.8 1.29 44

60 0.9 1.56 51

65 1.2 2.03 62

70 1.4 2.19 70

75 1.5 2.49 7F

80 1.7 2.69 8B

85 2.0 3.05 9E

90 2.2 3.33 AA

95 2.5 3.72 C1

100 2.7 3.99 CA

5.4.3 Temperature Monitoring System:

 Two transducers have been shown in figure 6. These transducers sense the temperature of

two ovens. The temperatures of these two ovens are to be maintained at T1 and T2 respectively.

The µp sends command to switch on the channel s1 to get the electrical signal proportional to the

temperature of oven no 1. Then it sends start of conversion pulse S/C to the A/D converter. After

the conversion is over the A/D converter sends end of conversion signal E/C to the µp. on

receiving E/C signal the µp reads the output of the A/D converter. The output of the A/D

converter is a digital voltage. This is proportional to t1, the temperature of the oven no 1. The µp

compares t1 with T1. If t1 is less than T1, the µp issues a control signal to raise the temperature of

the oven no 1. If the heating of the oven is electrical and current is controlled by thyristors , the

µp will directly control the firing circuit of thyristors to increase current resulting in increase of

the temperature. If the heating is done by final, the µp will send a signal to the relay which is

controlling the final input. The measurement temperature is also displayed. If t1>T1, the µp sends

signal to decrease it till it becomes equal to T1. After this the µp sends commands to switch on

the multiplexer channel S2 to get the electrical voltage proportional to the temperature of over no

2. The µp measures and control its temperature as explained above. After certain internal of time

the µp repeats the process of measuring and controlling the temperature of the two ovens. A

program flow chart is shown in Fig. 5.8. Similarly any other physical quantity can be measured

and monitoring continuously. If a transducers given A.C signal it can be rectified using precision

rectifiers.

110

 Fig 5.8: Program flow chart for temperature display and monitoring

5.5 Measurements of Electrical quantities:

 (i) Frequency measurements:

 To measure the frequency of a signal, the time period for half cycle is measured which is

inversely proportional to the frequency. A sinusoidal signal is converted to square wave using a

voltage comparator LM 311 or operational amplifier LM 747 or LM 324 as shown in Fig.5.9.

 Fig 5.9: Sine to square wave generator

111

 A diode is used to rectify the output signal. A potential divides is used to reduce the

magnitude to 5 volts.

 A program has been developed to sense the zero instant of the rectified square wave. The

µp measures the magnitude of the square wave at two consecutive points as shown in fig 10. The

two magnitudes are compared and decision is taken on the basis of carry and zero states flags,

whether the point is at zero point.

 Various points have been shown in Fig 5.10. Very nearly to P3 at its left side the

magnitude of the square wave is zero, and at P4 , 5v, at logic „1‟. The µp subtracts the 1
st
 value

from the 2
nd

, so the result is non- zero and there is no carry. This is the basis for the selection of

zero instant point. Suppose the µp takes reading at p1 and p2 where both magnitudes are zero.

Difference of the two is zero. So this is not the zero instant of the wave. At points p5 and p6 the

difference of the two values is zero. So it is also not a zero instant point. At p7 and p8, the

difference is non-zero but that is carry. So it is the end point of the half- square wave.

 Fig 5.10: Rectified square wave

 As soon as the zero instant point is detected the µp initiates a register pair to count the number

how many times the loop is executed. The µp reads the magnitude of the square wave again and

moves in the loop. It crosses the loop when the magnitude of the square wave becomes zero.

Thus the time for half cycle is measured. The count can be compared with the stored numbers in

the look-up table and the frequency can be displayed. The count is inversely proportional to the

frequency of the input signal can be used for further processing and control as desired. An

interfacing circuitary is shown in Fig 5.11. The program flow chart is shown in Fig 5.12. The

port is input control word is 98H.

 Fig 5.11: Interface for frequency measurement

112

Flow chart for frequency measurements:

Program:

Memory

Address

Machine

codes

Label Mnemonics Operands Commands

2000 3E MVI A,98H Get control

word

2001 98H

2002 D3 OUT 03 Initialize the

ports

2003 03

2004 DB Back In 00 Read voltage

pulse at port

A

2005 00

2006 47 MOV B,A

2007 DB IN 00 Read voltage

pulse again at

port A

2008 00

113

2009 B8 CMP B Compare two

readings

200A CA JZ Back

200B 04

200C 20

200D DA JC Back

200E 04

200F 20

2010 01 LXI B, 00, 00 Initialize B-

C pair for

counting

2011 00

2012 00

2013 03 Loop INX B

2014 DB IN 00 Read voltage

pulse

2015 00

2016 1F RAR

2017 DA JC Loop Check

whether v has

become zero,

no, go to loop

2018 B

2019 20

201A 76 HCT stop

 Fig.5.12

 In the above program, the part of the program from the memory address 200 4 to 200 F is to

detect the zero instant of the square wave. In 00 at the memory location 200 4 is the 1
st
 reading

of the magnitude of the square wave. MOV B,A transfers the 1
st
 reading from the accumulator to

the register B. Again In 00 at the memory address 200 7 takes the 2
nd

 readings of the magnitude

CMP B compares these two readings. JZ indicates the condition that both readings are equal

magnitudes, ie. Readings are either 0,0 or 1,1. Therefore it is not the condition of zero constant

and the program jumps to the label back. If indicates that the 1
st
 readings is 1 and the 2

nd
 reading

0. This is the condition for the end of rectifies square wave. So program again jumps to the label

back. The program will move further only when the result is non-zero and there is no carry. This

will be the case when the 1
st
 reading is 0 and the 2

nd
 readings is 1/ this is the case of zero instant.

Once the zero instant is detected the program moves loop till the square wave exists. Thus the

time period for half cycle is measured. The count is inversely proportional to the frequency . If

frequency is to be displayed 7- segment displays can be interfaced and using loop-up table

technique it can be displayed.

114

(ii) Frequency measurement using SID line:

 The sinusoidal wave is converted into square wave using op.amp. The output is reduced

to 5V and applied to SID line of a µp. The execution of RIM instruction reads the status of SID

line and stores it in the 7
th

bit of the accumulator. It also reads status of interrupt MASKS and

STORES them in other bits of the accumulator. At present interest is in the status of SID line, ie

contant of the 7
th

 bit of the accumulator. A program to measure frequency is given below.

Program from the memory location 2400 to 240D detects the rising edge of the square wave.

Once it is detected H-L pair is initialized for counting. The program checks how long the wave

remain high in one cycle. In other words it measures time for half cycle because the wave

remains high only for half cycles; for other half cycle it goes low. The time is given interms of

counts which is proportional to the wave frequency of the wave. The count is shared H-L pair.

Frequency can be displayed using look-up table or can be computed and then displayed. The

counts in H-L pair can be used for control which depends on frequency.

Program:

Memory

address

Machine

codes

Label Mnemonics Operands Comments

2400 20 Loop RIM Read

frequency

signal

2401 E6 ANI 80 7
th

 bit of the

accumulator

is retained.

2402 80

2403 4F MOV C,A

2404 20 RIM Read

frequency

signal again

2405 E6 ANI 80

2406 80

2407 B9 CMP C Compare with

previous

value

2408 CA JZ Loop Detect low to

high

transition

2409 00

240A 24

240B DA JC Loop

240C

240E 21 LXI H, 0000 Initiative H-

L pair to

count

115

frequency

240F 00

2410 00

2411 23 Count INX H Count

frequency

2412 20 RIM Read

frequency of

signal

2413 17 RAC

2414 DA JC Count Is frequency

signal high

yes, to count

2415 11

2416 24

2417 76 HLT

Result:

Frequency Content of H-L pair(count for half

cycle)

50 026A

60 0203

100 0135

120 0102

200 0094

(iii) Resistance Measurement:

 The resistance of a circuit is given by the expression

𝑅 = 𝑍 cos 𝜑

=
𝑉𝑟𝑚𝑠

𝐼𝑟𝑚𝑠
cos 𝜑

=
𝐾1𝑉𝑚 cos 𝜑

𝐾2 𝐼𝑑𝑐

= 𝐾
𝑉𝑚 cos 𝜑

𝐼𝑑𝑐

Where K1 , K2 and K are constants.

116

 Fig 5.13: Instantaneous values of voltage at the instant of peak current

The instantaneous value of the voltage at the moment of the peak current is equal to 𝑉𝑚 cos 𝜑 ,

Fig 5.13. To obtain a pulse at the moment of peak current a phase shifting circuit and zero- cross

detector have been designed and developed. The current signal is fed to the phase shifter to get a

phase shift of 90
0
. Thus the output of the phase shifter is fed to the zero- cross detector as shown

in Fig 5.14. To obtain the required pulse. The µc reads and examines the output of the zero-cross

detector whether the pulse has appeared. The appearance of the pulse indicates that the current

signal has reached its peak. At this moment the µc sends a command to the multiplexer to switch

on the channel S4 to obtain the instantaneous value , which is equal to 𝑉𝑚 cos 𝜑.

The instantaneous value of the voltage is fed to an analog to digital converter. After the

conversion is over, the digital voltage is stored in the memory. To obtain the rectified current

signal a precision rectifier using I.C. packages LM 398 has been used. The µc gets the rectified

current through the multiplexes channel S7 and A/D converter. After receiving the values of

𝑉𝑚 cos 𝜑 and 𝐼𝑑𝑐 the microcomputer calculates the value of resistance.

 Fig 5. 14: Schematic diagram of Interface for resistance measurements

117

5.6 Digital clock:

 Many µp applications would require doing certain tasks at specific time of the day or involve

the time of day in some other form. For example, switching ON and OFF street lights at

specific time in the evening and following morning or punching entry time of every worker for

a shift, at a factory gate etc,. A basic requirement of this type of application is a real time digital

clock with a display of current time. The flow chart and the corresponding program are shown in

Fig.5.15.

Flow Chart for digital clock program:

118

Program:

Label Mnemonics Comments

BEGIN LXI H,4003

MOV D,M Initialize hours in D register

INX H

MOV E,M Initialize minute in E register

INX H

MOV A,M Initialize seconds in accumulator

ADI 01 Increment accumulator

DAA Convert into BCD Signal

MOV M,A

CPI 60 Compare seconds with 60

JZ UPDATE If seconds=60 go to UPDATE

DISP LXI H,4005H Initialize the with specific

 address

MOV A,M Load accumulator with display the

seconds in data field of kit.

CALL 0520

DCX H

MOV D,M Load hours into e register

DCX H

MOV D,M Load hours into D register

CALL 0510 Display the hours and minutes in the

address field of kit

119

DELAY LXI B,16-bit data Initialize BC register with a

 value so as get 1 sec delay

TOP DCX B

 MOV A,C

 ORA B Check BC register =0000

 JNZ TOP If BC is not equal to 0000, go to

 top

 JMP BEGIN Go to begin

UPDATE SUB A Initialize A register with 00

 MOV M,A

 MOV A,E

 ADI 01 Increment minutes

 DAA Convert into BCD format

STA 4004 Store minutes into specific address

CPI 60 Compare minutes =60

JNZ DISP If minutes is not equal to 60, go to

disp

SUB A Initialize ACC=00

STA 4004 H Store 00 into minute

MOV A,D

ADI 01 Increment hours

DAA Convert into BCD format

STA 4003 H Stores hours into specific address.

CPI B Check hours =B

JNZ DISP If hours is less than B, go to DISP

MVI A,01 Load ACC=01

120

STA 4003H Store 01 into hours

JMP DISP Go to disp.

 Fig. 5.15

Procedure:

1. Load the given program starting from the specified memory location or from any

other suitable memory location.

2. Initialize the specified or suitable location with the starting values of hours, minutes

and seconds

3. Use the relevant display routine of your trainer kit displaying data at the address and

data field.

4. Run the program.

5.7 DC Motor Speed Control:

 A µp trainer kit is used in thus DC motor speed control system. The interface circuit

along with the trainer kit is designed to maintain the speed of a DC motor at some specified

speed, to display the measured speed on the LED displays and to set the speed using keyboard.

(i) Hardware Design:

 As the µp trainer kit is used in this system, the hardware design deals only the interface

circuit. The block diagram for extra hardware as shown in Fig.5.16

 Fig.5.16

121

(ii) Speed Measurement:

i. To measure the speed of the motor a circular disk with several slots is attached to

the spindle of the motor.

ii. An LED and photo transistor assembly (or an opto-coupler) is used to generate

the pulse train with frequency related to the speed of the motor.

iii. For each rotation of the spindle the photo transistor is obstructed and exposed to

the light emitted by the LED for n-times where n is the number of slots on the

circular disk.

iv. By using suitable pulse shaper circuit, it is converted into a TTL comparable

rectangular wave.

v. The rectangular wave is applied to a timer/ counter section to measure the

frequency from which the speed can be determined.

(iii) Speed Control:

i. The speed is controlled by applying a variable DC voltage across the armature

coil of the molar, thereby producing a variable armature current.

ii. The variable DC voltage is generated in the help of a DAC.

iii. A current amplifier is used to drive the motor.

(iv) I/O port and timer/counter:

For interfacing the extra hardware, only one 8-bit port and a timer/counter section are

necessary. The port A and timer/counter of the 8155 available in the trainer kit is used.

(v) DAC and current amplifier:

DAC (Digital Analog Converter) is implemented by IC 1408. The output of DAC is

applied to a motor driver buffer amplifier as shown Fig.5.17. The buffer amplifier is

basically an emitter follows:

Fig.5.17

122

(vi) Pulse shaper and LED driver:

i. The LED permanently excited by a specified forward current to emit light.

ii. The signal generated by photo transistor is converted to a TTL compatible

signal by using a Schmitt trigger circuit using transistor. The circuit

diagram shown in Fig.5.18 .

iii. The output of the pulse shapes is fed to the clock input of the

timer/counter section for the measurement of frequency.

Fig.5.18

(vii) Display and keyboard:

i. For displaying the speed of the motor the data fields display of the drainer

kit is used.

ii. Keyboard of the trainer kit is used for entiring the required speed.

(viii) Software design:

 Software has to be designed to implement the following steps:

i. Read the desired speed from the keyboard.

ii. Choose an initial data to be applied to the DAC. So that the motor starts running.

iii. Apply data to the DAC through port A

iv. Generate delay for the motor to attain stable speed.

v. Measure the speed of the motor.

vi. Compare the speed with the required speed. If the speed matches then go to step 7. If the

required speed is low and then increment data by 1, otherwise decrement data by 1 and

go to step 7.

vii. Display the speed on the display

123

viii. Go to step 3.

Flow chart:

 A flow chart of these operation in the proper sequence is shown in Fig.5.19.

Fig.5.19

124

Program:

 Assume the following monitor subroutines are available in µp trainer kit. The program of

Dc motor speed control is shown in Fig.5.20

GETHEX:

 Reads the keyboard and the stores hex , key entered in „A‟ register .

DISDATA:

 Display the content of „A‟ register in the data field of the display.

DELAY:

 Produces the required delay.

Label Mnemonics Comments

 LXI SP, 20FF Initialize stack pointer

 MVI A,01 Control word for port A

 as output.

 OUT 28 send the cw to 8155

 CALL GETHEX read keyboard character.

 MOV C,A store it in „c‟ register

 MVI D,CO initial speed data

TOP MOV A,D

 OUT 29 send to port A, thereby to

 DAC

 CALL DELAY wait for the speed up for

 motor

 MVI A,00 timer high port

 OUT 2D send to timer high port

 MVI A,FF timer low values. This value

 is decrement by the counter

 for each timer-in pulse

125

 OUT 2C send the cw to 8155

 MVI A,C1 control word to start the times.

 OUT 28 send the cw to 8155

 CALL DELAY wait for counting the pulses.

 MVI A,41 control word to step the

 Times

 OUT 28 send the cw to 8155

 MOV B,A save it in B register.

 Fig.5.20

5.8 Traffic Light Control Using 8085:

 One of the applications of microprocessor based systemis traffic light controller. By

interfacing with microprocessor the signal lamps in a road junction are controlled using suitable

hardware and software. Figure 5. 21 shows the arrangement of the lights in the road junction.

 Fig.5.21 Hardware for traffic light control

(i) Delay program

 DELAY: LXI D, Count : Load count to give 0.5 sec delay

 BACK: DCX D : Decrement counter

 MOV A, D

 ORA E : Check whether count is 0

 JNZ BACK : If not zero, repeat

 DCR C : Check if multiplier zero, otherwise repeat

 JNZ DELAY

126

 RET : Return to main program

Fig. 5.22 shows the interfacing diagram to control 12 electric bulbs. Port A is used to control lights on N-

S road and Port B is used to control lights on W-E road. Actual pin connections are listed in Table 1

below.

The electric bulbs are controlled by relays. The 8255 pins are used to control relay on-off action with

the help of relay driver circuits. The driver circuit includes 12 transistors to drive 12 relays. Fig. 5.22 also

shows the interfacing of 8255 to the system.

(ii) Interfacing diagram

Fig. 5.22 Interfacing diagram

127

(iii) Software for traffic light control

Source Program 1:

• MVI A, 80H : Initialize 8255, port A and port B

• OUT 83H (CR) : in output mode

• START: MVI A, 09H

• OUT 80H (PA) : Send data on PA to glow R1 and R2

• MVI A, 24H

• OUT 81H (PB) : Send data on PB to glow G3 and G4

128

• MVI C, 28H : Load multiplier count (40ıο) for delay

• CALL DELAY : Call delay subroutine

• MVI A, 12H

• OUT (81H) PA : Send data on Port A to glow Y1 and Y2

• OUT (81H) PB : Send data on port B to glow Y3 and Y4

• MVI C, 0AH : Load multiplier count (10ıο) for delay

• CALL: DELAY : Call delay subroutine

• MVI A, 24H

• OUT (80H) PA : Send data on port A to glow G1 and G2

• MVI A, 09H

• OUT (81H) PB : Send data on port B to glow R3 and R4

• MVI C, 28H : Load multiplier count (40ıο) for delay

• CALL DELAY : Call delay subroutine

• MVI A, 12H

• OUT PA : Send data on port A to glow Y1 and Y2

• OUT PB : Send data on port B to glow Y3 and Y4

• MVI C, 0AH : Load multiplier count (10ıο) for delay

• CALL DELAY : Call delay subroutine

• JMP START

Delay Subroutine:

 DELAY: LXI D, Count : Load count to give 0.5 sec delay

 BACK: DCX D : Decrement counter

 MOV A, D

 ORA E : Check whether count is 0

 JNZ BACK : If not zero, repeat

 DCR C : Check if multiplier zero, otherwise repeat

 JNZ DELAY

 RET : Return to main program

5.9 Interfacing of 7 segment LED display

Statement: Interface an 8-digit 7 segment LED display using 8255 to the 8085 microprocessor

system and write an 8085 assembly language routine to display message on the display.

129

 (i) Hardware for eight digit seven segment display interface:

 Fig.5.23 Interfacing of multiplexed eight 7-segment display using 8255

(ii) Software for eight digit seven segment display:

 For 8255, Port A and B are used as output ports. The control word format of 8255

according to hardware connections is:

130

(iii) Source program:

 SOFTWARE TO INITIALIZE 8255:

 MVI A, 80H : Load control word in AL

 OUT CR : Load control word in CR

(iv) Subroutine to display message on multiplexed led display:

Set up registers for display:

• MVI B, 08H : load count

• MVI C, 7FH : load select pattern

• LXI H, 6000B : starting address of message

Display message:

• DISP 1: MOV A, C : select digit

• OUT PB

• MOV A, M : get data

• OUT PA : display data

• CALL DELAY : wait for some time

• DISP 1: MOV A, C

• RRC

• MOV C, A : adjust selection pattern

• INX H

• DCR B : Decrement count

• JNZ DISP 1 : repeat 8 times

• RET

Note: This "display message subroutine" must be called continuously to display the 7-segment

coded message stored in the memory from address 6000H.

Delay Subroutine:

 Delay: LXI D, Count

 Back: DCX D

 MOV A, D

 ORA E

 JNZ Back

 RET

